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FOREWORD

This report was prepared by the Cﬁemical Engineering
Department with the cooperation of the Compﬁter Laboratory
of Tulane University, New Orleans, Louisiana, to report on
the "Investigation into the Numerical Solution of Partial
Differential Equations," of Contract NAS8-20136.

This work was sponsored by the National Aeronautics
and Space Administration, George C. Marshall Space Flight
Center, Huntsville, Alabama. The program was monitored by
Mr. Audie E. Anderson of the Computation Laboratory.

Principal Investigator on this investigation was
Dr. Dale U. von Rosenberg, Professor of Chemical Engineering.
For the first several years of the study Dr. Daniel B. Killeen,

Director of Computing, served as Co-Principal Investigator.
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. SUMMARY OF INVESTIGATION

Introduction. During the period from May 25, 1965, through

June 30, 1970, numerical solutions for.four different ciasses
of problems described by paftial differential equations have
been investigated under Contfact NAS8-20136. The work per-
formed under terms of this contract will be described iﬁ this
final réport.

The first section of this report is a summary of the
results of the work and a list of sources for a complete
description of the wbrk. ‘Each of the last four sections of
this report is a more detailed description of the work on one
class of problems. 1In mo$t cases, these last four sections
are comprised of technical pépers published in journals or of
excerpts from doctoral disserxtations.

-It should be noted-at this point that new techniques were
needed for the numerical solutions of these problems and that
several of the methods developed may be useful in sélving other
problems. The originality‘of‘the work performed under the
texrms of_this contract is attested to by the publication of
four papers in technical journals and the completion of five
‘doctoral dissertations on this work. In addition, two ﬁore
doctoral dissertations will be completed on work begun under
the contract, and there may be other papers published.

A complete listing of the publications and dissertations
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_SUMMARY OF INVESTIGATION

Introduction. During the period from May 25, 1965, through

June 30, 1970, numerical solutions for four different classes
of problems described by paftial differential equations have
been investigated under Contfact NAS8-20136. The work per-
formed under terms of this contract will be described iﬁ this
final report.

The first section of this report is a summary of the
results of the work and a list of sources for a complete
description of the work. -Each of the last four sections of
this report is a more detailed description of the work on one
class of problems. In most cases, these last four sections
are comprised of technical papers published in journals or of
excerpts from doctoral disserxtations.

It should be noted at this point that new techniques were
needed for the numerical solutions of these problems and that
several of the methods developed may be useful in sélving other
problems. The originality of‘the work performed under the
terms of this contract is attested to by the publication of
four papers in technical journals and the completion of five
doctoral dissertations on this work. In addition, two ﬁore
doctoral dissertations will be completed on work begun under
the contract, and there may be other papers published.

A complete listing of the publications and dissertations



~this work.

resulting from this contract is presented at the end of

section I of this report.

Majox Classes of Problems Studied. The original problem

studied under terms of this contract was a two-dimensional
moving boundary problem. Analytic.solutions for this type
problem cannot he obtained, and very few attempts at numerical
solutions have been successful. A successful numerical
solution was obtained for this problem and resulted in the
doctoral dissertations by_Killéen and Stack.

As a part of one of the unsuccessful'attempts at a
solution for ﬁhe moving boundary problem it was necessary to
solve, numerically. for the velocity field in an ideal fluid.
Numerical solutions for this problem in texrms of the potential
are well known, but a solufion was desired in terms of the
velocity components directly. This solution was obtained and
published in the papexr by von Rosenberg. 'As a result of this
work, a more efficient method was developed by Gates, and his
éissertétion and the paper by Gates and von Rosenberg describe
The methods wefe so successful for solution of the

unsteady—state potential flow problem (the elliptic—problcm)

.that an attempt was nade to apply this new method to the unstea

state (parabolic)problem. The results of this work are

described in the dissertation by Mount which was completed in

May 1970.
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resulting from this contract is presented at the end of

Section I of this report.

Major Classes of Problems Studied. The original problem

studied under terms of this contract was a two-dimensional
moving boundary problem. Analytic solutions for this type
problem cannot be obtained, and very few attempts at numerical
solutions have been successful. A successful numerical
solution was obtained for this problem and resulted in the
doctoral dissertations by Killeen and Stack.

As a part of one of the unsuccessful attempts at a
solution for ﬁhe moving boundary problem it was necessary to
solve, numerically, for the velocity field in an ideal fluid.
Numerical solutions for this problem in terms of the potential
are well known, but a solution was desired in terms of the
velocity components directly. This solution was obtained and
published in the paper by von Rosenberg. As a result of this
work, a more efficient method was developed by Gates, and his

dissertation and the paper by Gates and von Rosenberg describe

~ this work. The methods were so successful for solution of the

unsteady-state potential flow problem (the elliptic-problem)

“that an attempt was made to apply this new method to the unsteady

state (parabolic) problem. The results of this work are
described in the dissertation by Mount which was completed in

May 1970.



Work had been started at Tulane on the development of
numerical solutions for first-order hyperbolic equations
before this contract was initiated. The continuation of
this work_was partially supported under this contract during
the deveiopmeﬁt of the solution for a transient, compressible
flow problem including a moving shock. This work is described
in the dissertation by Watts and the paper by Watts and von
Rosenberg. Work is continuing to refine this method and
extend it. This work will result in a dissertation by Royo.

At the regquest of a group in the Propulsion and Vehicle
Engineering Laboratory at Huntsville, a mathematical model
of the molecular sieve bed for the control of carbon dioxide
in the environment of a space capsule was developea. This
model was then solved nﬁmerically on the computer. Actually,
three ﬁathematical models of varying complexity were developed.
The simplest one, which took much less computing time, was
-.checked against the more complex models and found to be
sufficiently accurate for purposes of predicting behavior of

the bed. This work will be described in a dissertation by Schof.

Moving Boundary Problem. The physical problem studied is that

of the draining of a liquid film from the walls of a tank.
The co-ordinates were changed so that the governing equations
are essentially the Navier-Stokes equations. These eguations

for the isothermal problem are




and
[ 2. )
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with the equation of the moving boundary given by

36 38 _
-5-{__- + W-a——-'— v = 0 (3)

N

where 6(z,t) is the width of the boundary. The other variables
are defined at the end of this section. The complete non-
isothermal problem which is more complicated, is discussed in
Section II of this report. Only the method of solving the
isothermal problem will be touched on in this summary.

Two problems are involved in obtaining a numerical
solution to this problem. First, tne location of the boundary
at each new time level must be found f;om eqn. (3). Next,
the velocity components, w and v, must be found from eqns. (1)
and (2) in the entire liquid region. A two—dimensiénal grid
of points was set up, and the‘values of w and v were determined
at some'of these discrete points.

In order to determine the location of the boundary of
the liquid at the new time level, a finite difference analog
to egn. (3) was written for each row of points. Each of these
equations contains the values of § at two rows at the new time
level. These equations were solved simultaneously with a

material balance relationship so that the additional amount of



ligquid at the new time level was set equal to the amount of
fluid which flowed into the liquid region at the z = 0 boundary
during the time interval between two successive time steps.
Values of the velocity components at the old time level were
used in these equations so that no iteration was reguired.

The values of the velocity components, w and v, were
determined at the new time step for one new row of points at
a time. An iterative procedure was used for the finite
difference analogs which were centered in time. The values
of w and v used in the coefficients in egn. (2) were one
iteration behind those determined at each iteration. Eqgns. (2)
and (1) were ﬁsed alternately to determine first the w's and

then the v's at the new time level.

Potential Flow Problems. In some of the early work on the

moving boundary problem, it was necessary to determine the
velocity field in the vapor, which was considered an ideal or
inviscid fluid. For this fluid, eqn. (1) applies, but since
the fluid has no viscosity, egn. (2) does not apply. Instead,
the requirement that the flow is everywhere irrotational is

the second needed equation. This relation is

ow ov. = 0 (4)

A numerical method for solving egns. (1) and (4)

simultaneously was developed. For the first method developed,
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botﬁ w and v were determined at all the intersection points
of a finite grid of horizontal and vertical lines. An
iterative method was needed since the bbundary conditions
are given on all four sides of the region. Several efficient
algorithmé were deveIOped for which the equations from several
rows of points were solved simultaneously.

In the development of several of these multi-row methods,

it was discovered that one-fourth of the equations containing

one-fourth of the unknown values of w and v formed an independent

set. In this set the values of w and v were located on
different points in the grid, and the points at which w and v
were located were arranged in a checkerboard pattern. ‘here-
fore, a new method was developed for the numericai solution
of egns. (1) and (4). This new method is clearly superior to
the original method. 1In fact, for some grid sizes it is
possible to obtain a direct solution to the finite difference
equations with no iteration.

With such an efficient method available for the steady-
state problem, it was decided to attempt the development of
a "checkerboard" method for unsteady-state potential flow.
Equation (4), the irrotationality condition, still applies
to the unsteady state case, but egn. (1), the continuity
relation, must be modified by the addition of an accumulation

term for the unsteady state case. This relation becomes
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where T is the flux potential which is temperature in the

case of heat conduction. The flux components can be defined

from the potential as

= . 98T :
W= T (6)
and
_ 2T
v = 3y (7)

For this problem values of T at one-fourth the points of the
original grid rnust be determined at each time, as well as
values for w and v. Finite difference analogs to egns. (4)
and (5) and either (6) or (7) are necessary to determine the
unknowns. A successful procedure was developed for this
problem, and it apparently has some advantages over previously

developed numerical methods for highly anisotropic problems.

Compressible Flow Problems. The differential equations for

transient flow of a compressible fluid cannot be solved
analytically ahd only recently have numerical or graphical
methods been dgveloPed for these problems. Any type of
solution is greatly complicated by shocks or discontinuities
which move through the flow field. For this problem, a
method hadvbeen developed for the numerical solution which

worked very well until the development of a shock. The



development of & method of introducing and following the
shock was continued under this contract.
The equations governing transient discharge of a com-

pressible fluid from a duct of constant cross-section are

% _ _ 2% _ 2u » (8)
ot % ox

Ju Ju )

'a—t- -U.S; - exp [b('Y"‘l)J 3’}‘(‘ (9)

These equations apply for isentropic conditions and can be
used even when a shock is present if the entropy change across
the shock is small.

A centered finite difference method had beenAused to
sglve these equations numerically with excellent results up
until the development of a shock. The shock forms and moves
into and then out of the duct. All flow variables are dis-
continuous across the shock. Therefore, at the formation of
Lhe shock, a pair of moving points was introduced into the
fixed gfid. The values of the dependent variables on the
two sides of the shock were assigned to these moving points,
and these points were allowed to move through the fixed grid
with the speed of the shock. Excellent results were obtained
for this problem;

For shocks of hiéher strength the entropy change is too
large for the isentropic equations to be used; so a third

equation must be included in the mathematical model. Also, in
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computing the position of the shock, the characteristics of
the system were used. Therefore, in a continuation of this
work, the equations in terxms of these characteristics are the

ones solved numerically. The characteristics are defined as
- 2 ‘ :
P = —= A+ u (10)
Q = — A - u (11)

and the governing differential equations in terms of these

variables are

P P 23S _

3T + (utda) Y A > - 0 (12)
20 .\ 30 35 _ '
3T +  (u-3a) X + A % - 0 (13)
35S Y-

EYY + use = 0 (14)

for a duct of constant cross-section.
At the present time, egns. (12), (13), and (145 have
been solved numerically. Thefe is apparently some advantage
over soiving the equations in texms of the physical variables.
A method is now being developed for intfoducing the shock
“into the solution of these equations. The conditions at a
weak shock are much simpler in terms of the characteristics
than in terms of the physical variables; so a definite advantage
is expected in this case. The work on this problem will con-

tinue after termination of the contract.
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Molecular Sieve Adsorption Problem. Carbon dioxide must be

continuously removed from the environment of any manned space
craft. For longer flights a molecular sieve adsorption bed
is preferred over the lithium hydroxide cannisters currently
used. The carbon dioxide can be desorbed from the molecular
sieve bed which can then be reused .to adsorb more carbon
dioxide.

Several mathematical models of this adsorption bed were
developed, and computer programs were written for the numerical
solution of these models. . The simplest model was sufficiently
accurate for purposes of the laboratory and could be used to
predict behavior of the bed in a very short time. This simple
model will be discussed below; discussions of the more exact
models are given in Section V of this report.

The heat effects of adsorption are included in the
simplest model, but the temperatures of the gas and solid are
assumed to be equal at any position in the bed. Furthermore,
the loading of the carbon dioxide on the solidqdg, ws,.is assumed
to be constant throughout the solid‘pellet. Both these
assumptions were justified from the results of the more exact

models studiea. Variations in the gas density caused by

changes in pressure and temperature are also neglected, but

these variations can be shown to be small by analysis. The

resulting differential equations are
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axvs .
55— Ep (p—pks) (15)'
ow
OE) < ) - R (16)
oxX ot F ot
3T : 3T _ 3w
u-é; + (1+EG) ﬁ = EH 'a—— (17)

In addition to these relations, an equilibrium condition is
ﬁeeded to relate W the loading on the solid, to Pirg’ the
equilibrium partial pressure of the carbon dioxide in the gas
phase. This equilibrium condition is a function of T, the
temperature of the solid.

Finite difference eguations analogous to egns. (15) and
(16) were written, and the unknown value of p was.eliminated.
This procedure resulted in a single relation between W and
Pis which was solved simultaneously with the equilibrium
relation. The amount of iteration is minimized, and the
Folution proceeds very rapidly even though small increments
in x and t must be used.

A model of the vacuum desorption case has also been
developed. This model accounts for density variations in the

gas since the pressures are extremely low. However, the

‘results obtained from the computer runs show that the gas is

removed from the bed as rapidly as it is desorbed.
During development of the adsorption model, a new analog

for the partial pressure in the mass transfer term was utilized.
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This diagonal analog was then applied to the eguations foxr
the counter-current heat exchanger which had been solved
some years before. The results were so much improved that

a publication resulted.

12



Nomenclature

A - dimensionless velocity of sound

b - ln(b/oo)

EH

dimensionless mass transfer coefficient
ratio of capacitance of solid to gas for mass
ratio of heat capacity of solid to gas

ratio of heat of adsorption to heat capacity of gas

g - acceleration of gravity

p—

T -

partial pressure of carbon dioxide

- equilibrium partial pressure of carbon dioxide

2
—;Y—:—l-A-l-u

2
Y—__—]:A—u.

dimensionless entropy
time

temperature

u, v, w - velocity or flux components

w
S

X,

p -

°L

loading of carbon dioxide on solid

Yy, 2 - co-ordinate directions

co-ordinate of moving boundary
ratio of heat capacities
viscosity

density of gas

- density of liquid

p, - reference density of gas
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Moving Boundary Problem
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NUMERICAL SOLUTION OF TWO-DIMENSIONAL MOVING-BOUNDARY PROBLEM

PROBLEM DEFINITION

The physical system studied is that of a reservoir whose
surface is at rest at time zero with vapor above the surface at a
temperature higher than that of the liquid. As the liquid is
drained oﬁt of the reservoir, a film forms on the wall and vapor
condenses on the liquid surface simultaneously. The total vapor
space above the liquid is relatively small so that condensed vapor
on the dry wall above the initial liquid surface need not be
considered in the problem.

The equations describing this process may be derived using
basic physical laws. The result is that four ﬁartial differential
equations are obtaineé; The equations relating the variables and
their rates of change within the liquid are the continuity, momentum,
and energy equétions. In addition theré is a partial differential
equation involving the position of the boundary. This last equation
is actually one of the boundary conditions. There are also other
boundary conditions, both at the wall and at the liquid-vapor inter-
face. |

This type>of problem has been analytically investigated by

Sparrow and Gregg ( 11), Chung ( 2 ), and O0'Laughlin ( 8 ). Killeen

( 7 ) developed a finite difference solution to the isothermal

drainage problem with certain restrictions in the model. The dis-

cussion of an expanded mocdel for the isothermal case will be

presented in the next chapter.
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- The actual equations and boundafy conditions are given by
Chung ( 2 ). In Figure 3-1, a sketch of the physical picture of the

film is shown.

.

Figure 3-1 - Film for Drainagé with Condensation

The equations describing this system are:

Continuity
9 u 3 Vv
+ - 0 (3.1)
9 X 2y
Momentum
. '2
v 3 u ug3u du 9 u
— + — 4 = E, + E, .
: 2 .2
3y 'a.x 3 t 3y (3.2)
Energy
v 8T u 9T + 8T 3% T ( 3.3)
, E :
+ + = 1-'——2"‘-
R4 3 x 3t 3y
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Boundary Conditions

at y=0; u=0, v=20,T-= Tw ' ( all x and t )
9 u 3§ u 5 8
at y =8 (%, t); =0, T=7T + -v =
3y . 9 t . 90X
9 T
E, ( 3.4)
3y
a

x and y are independent variables representing distance

t is an independent variable den;ting time

u is the x-component of velocity

v is the y-component of velocity

T is the temperature

S is the constant drainage velocity at which the surface of

the bulk of the liquid is being lowered. At this surface

where x = St, additional boundary conditions are:
w=u(y, t)andT=T

The physical constants El’ E2, E3, and E4 are given as

follows:

El =k / pc

E,=g (p-pv)/op
E3=u/o

E4.= k / k\p

It is clear that in solving this problem, consideration must
be given to the energy and mass transfered at the interface.
This problem is studied in two parts. First an attempt is

made to develop a better model for the isothermal drainage problem

L | | _n
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as presented by Killeen ( 7 ). Then this expanded model is to be

used to solve the general problem.
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DISCUSSION OF THE ISOTHERHAL-DRAINAGE PROBLEM

The unsteady drainage problem fgpresents.ahmuch simpler
physical problem than the one presented in the pfevious chapter.
There is no mass Or energy transfer at the interface. Thus the
energy equation and the energy term in the boundary equation are

omitted. The set of equatiomns reduces to:

Continuity
°ou 3 v )
+ —— = 0 _ (4.1)
3 X 3y : ' :
Momentum
v 9du u 9 u du. E +E 32 ( &.2)
+ + = Byt iy —o _
3y 9 X 9t . 3y

Boundary Conditions

at y=0; u=20,v= 0 . ( all x and t )

aty =68 (%, t); 3 u ' 3 6 u 9§
+

3y 3t ? x

(432

at x =0 u=u(y,t )

Since much of the work done in solving this set of equations

numerically is closely connected with the work on the non-isothermal
problem, it is felt necessary to present a general outline of the

'

steps used by Killeen ( 7 ) in his solution. JIn his solutiom, use

14
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was made of the fact that the film formed by the draining of a
liquid is the same as the film formed on a plate which is withdrawn
from the liquid. This equivalence was shown by Van Rossum ( 13 ).
The equations given above are transformed so that distance is
measured upward from a reference plane on the surface of the bulk
liquid which moves downward with a velocity S. The transformed
distance is z = St - x. In addition, a new variable representing -
the velocity upward with respect to this moving reference plane is
defined as w = S - u. The various transformations are given by

Killeen ( 7 ). The result is that the equations have the form:

Continuity
3w 3 v -
+ .= 0 ) ( 4.8)
3 z 3y
Momentum
2
v 9w w 3w 3w 9w
+ + = - E,+E (4.5)
3y d z 3 t 2 3 3 y2
Boundary Conditions
at y=0; w=s,v=0
aty =68 (z,t); 3w 9 8 wdé
) — =0, + - -v=20
3y 3 t 3 z
' (4.6)
atz=0; w=w(y, t)

Dimensionalization of the variables was then made by Killeen

(7).
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His method follows:

1. All lengths divided by 60, the thickness of the.film
at z = 0.

2. All velocities divided by §, the drain veiocity.

3. All.tine divided by 6_/ S.

The boundary conditions then become:

at y=0; v=0,w=1
at y = §6; E_:i_ -0
oy

at z=0; =1, w=w (y, t)
The dimensionalization of course redefines the actual values of the

constants El and EZ' They-are now given as follows:

. 2
9 §,8 (p-ov) [S87p

2]
it

=
"

w/ eSS

To solve the problem, a velocity profile at z = 0, typical of

Boundary layer flow was chosen as: .

In the actual numerical solution, analogs. centered about half-

time levels were written for the momentum equation. For a given row,
there may or may not have been liquid at the old time step near the
boundary. A four-row ave;aging technique was employed if there was
liqiid at the old time step, and a three-row averaging method was

used when liquid was not present at the old time step. Centered~

- difference equations were written at the new time level to solve the



-

con rr——

i~

. A e o

e

contin

—_
17

uity equation for v. The procedure for locating the boundary

at each time step was an important part of the solution. Analogs

for the boundary equation were written between successive rows,

starting with the second and third and continuing to the last two.

Each of these equations contains the length of two rows. These were

used in conjunction with an overall mass balance. In this balance,

. the mass entering the system during one step at z = § is equated to

the sum of the changes in mass in each row during that time step.

This relation contains the lengths of all of the rows and together

with the other boundary equations gives a sufficient number of

equations for solution.

In his model, Killeen used the assumption that the liquid

layer at z = 0 is of length 60 at t = 0 and remains constant there-

after. This assumption seemingly caused:the eventual breakdown of

the solution. Eventually a situation is reached in which there is

not enough fluid entering at z = 0 to be distributed among the rows

which are present. It is here that a further study of this model

has been principally concentrated.

The computer program-listing for the numerical solution is

shown in the work of Killeen ( 7 ). It consists of a main program

and four subroutines. Since Ay = Az, the solution is set up so

that the number of rows increases by one during each succeeding time

step.

.

In starting up, the main program is used to calculate the

number of fluid increments in the second row after one time step.

The WF subroutine is used to calculate w's at this new row, and the

VF subroutine is used to calculate the v's. These calculated
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velocity components are then used in the GETJB subroutine to

computé the number of fluid increments at the second . and third rows
after the next time step. The velocity subroutines are then used

to calculate new velocity values at these TOwS. The entire procedure
is then repeated for as many time steps as possible.

The momentum equation is used in the WF subroutine to compute
the values. Values of w and v which appeaf as coefficients in this
equation are obtained by an averaging and jteration procedure. After
the values of w have been calculated, they are used in the continuity
equation to compute the v's. The boundary equation znalogs together
with the overall mass balance afe used in the GETJB subroutine to
calculate new values of the boundary. This solution was carried out
for a variety of increment sizes and fatios. It was found that the
best ratio of Az to Ay was unity and the ratio 5f by to either of
‘these varied between four and sixteen. This essentially concludes
the discussion of the numerical solution by Killeen (7).

Before attempting to develop a better model, a preliminary
study of various aspects of the existing solutién was made., First,
.ﬁhe errors generated in the iteration procedure used in the calcula-

ion of the velocity components‘were investigated.

Investigation of Iteration  Procedures

In Figure 4-1, the points where the w's and v's are calcu-~

lated are shown: .

A . —C o O >
z i
y H ) - <
i-1 -1 3 j w1

Figure 4-1 = Grid for Velocity Calculations
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The w's are calculated at the I th row at the O-points from

the momentum equation and the v's at the

A -points from the continuity

equation. The momentum equation analogs are centered about the A -

points at the half-time level and the w's and v's are thus needed

at these points. For the first iteration, the values used are:

(4.7)

(4.8)

After these have been used in the calculation of the w's at the

I th row and the v's at the I - % row, the new values of the coeffi-

)

n

%{w@—l,j—%,m

+w (i, 5-% n+1)

1
2

. 1 s 1
v (i-% j-*%

. 1 . 1
v (i-~% j~*%

-

( 4.10)

These values are used to obtain new estimates of w's and v's from

the momentum and continuity equations. This procedure is continued

until the values converge.

It is possible that errors which occur from incomplete

convergence during the first few time steps could greatly affect

v

the calculations for w and v at late time steps, especially those

at the uppermost rows.
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i | These runs were made with a ay / Az ratiolof 16 with Ay = 1/48
and Az = 1/768 for a period of about 35 time steps. The values of
the velocity components obtained were the same to four decimal

i places for 5 jterations. A series of runs were made in which 3, 5,

7 and 10 iterations were made at each time step before the calcula-

i '~ tions proceded to the next time level. Simular results were obtained

for other increment sizes and ratios.

The computed values which should be most affected by errors

e e A

. o - .

are those at the uppermost Tow after many time steps, since these

- A vttt

values are necessarily affected by all previous calculations in
& , both time and space. It is significant that the use of a relatively
' small number of iterations sucﬁ as fivé, produces the same results
g to four decimal places ?s does the use of a large number of iteratioms.

This result indicates that the snalogs used have good stability and

convergence properties.

Study of Boundary Location Procedures

In the determination of the location of the fluid boundary

the variable usad the computation by

i a2t each row at every time step,

-Killeen was the discrete number of ‘fluid increments, not the actual

distance. This variable is defined as:

6(1)=(JB(I,2)—1) (Ay) ' ¢ 4.11)

l " In the solution for the JB's at a new time level, the values

bf JB at the old time jevel are involved. These new values of the

JB's are obtained in decimal or floating point form and converted to

~ integer form for use as an index. In this procedure, the fractional

.
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part of the value is truncated. 1In Killeen's procedure, integer
values were used in the calculation of }B's at the next time level.
Decimal valueé at the old time level were used in the compu-
tation of the boundary at the new time. The result was altered
slightly, but not enough to be a significant improvement in the

solution.

In the boundary equation enalogs, w and v appear as coeffi-

cients. In his solution, Killeen ( 7 ) used the values at the &-
point at the old time level as indicated in Figure 4-2.
t =t ‘ .
n / JB (Alg 1 )
it
7/Jn('i—l 1)
i~ I A x s +

Figure 4-2 - Grid for Velocity Coefficients at the Boundary

The A -point has the value:

A ~point = JB (i, 1)+ JB (i-1,1)-1 T 4.12)
2

A study of the way in which these coefficients are chosen

indicates that slightly betuer results are obtalned if the values

of w nearest the boundary at the I th and I - 1 rows at the old

time level are averaged and used in the equations. A simular

procedure is used for the v coefficient.




. e —

-

i e e e

Expanded odel for Isofﬁermal Drainagze

The preliminary work on the original model by‘Killeen (7))
was done in order to facilitate studies for other models of this
process. In addition to the above work, the computer program for
the numerical solution was more compact by eliminating unneeded
storage space of data. " In the original program, storage was pro-
vided for all the values of w and v at both the old and new time
levels. During the calculation procedures at the new time level
for w at the I th row, the only values needed at the old time level
are those at the I and I - 1 rows. This makes it possible to use
only two subscripts for w, thereby reducing storage considerably.
Only one row of v's at the old time level are needed so the dimen-
sions for 6 may also be reduced by one.

As stated earlier, the probable cause of the eventual break-
down of the numerical solution occurs because not enough fluid
enters during a time step to be distributed among the rows after
their number becomes large. Therefore the nature of the boundary
layer flow at z = 0 needs to be investigated.

The boundary layer flow near a submersed plaﬁe which is
suddenly set in motion has been studied by Schlichting (10 ) and

others. It was found that the thickness of the boundary layer can

be expressed as a function of time. The relation is:

s(t) = 4fvte ‘ ¢4.13)

where v is the kinematic viscosity.
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The boundary layer flow at z = 0 in the drainage problem may
also be viewed as that made by a submersed plate suddenly set in
motion. Referring to Figure 4-3 it is seen that at z = 0, there is

a continuous body of fluid above that point.

continuous fluid
at z = 0
8
. o
1
b
fluid z
w=1 z =0

Figure 4<3 « Boundary Layer Flow at z = 0
Since the two processes are very nuch alike physically, the expression

for § may be used.at z = 0 to obtain a more realistic and better
nu;erical solution.

in working with this problem, it was decided to redimension-
alize the variables as follows:

1. All lengths.divided by v/ S

2.  All velocities divided by S, the drain velocity,

3. All time divided by v / 82

The form of the equation is not changed, but the values of the

constants are redefined. These new values are:

3
E.= gv(p ~pv) [pS
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Mathematically, the eéuation for 60 at z = 0 takes on a
simplified form. This is shown in the féllowing series of steps,
All primed quantities represent dimensionless variables. ‘The
variables which are dimensionalized in the equation are 3§ and t.

The relations are:

! . . t .
| 6" =6/ (v/s) and t = ( 4.14 )
2 .
v/ S
or
Y P \Y /-
§= — 3§ and t = - t ( 4.14a )
S . S
Substituting into the expression § = 4afv t

g Vool VY ' ( 4.15)
i s 52
; or

i GI - W/z7 ’ ' ( 4.15a )

Thus a very simple relation for ¢/ in dimensionless form
is obtained. In the actual numerical solution, the original éymbols,
§ and t, are retained.
The procedure used to adépt this relation for use in the
numerical solution is shown in the following steps:
1. At any time t, t = ( IM -1 Y (At ) since IM =1 at
t = 0 and one extra row of fluid is obtained for each

time step.
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2. 60=[JB (1, 2) -1_, [Ay] where the subscript 1
represents the first row and the subscript 2 indicates
the new time level.
3. After substitution the equation has the form:
[JB(1,2)~1][Ay]'=A\Km-l)zsc ( 4.16 )
or
JB(1l,2)=1+4/ayW(m-1)art ( 4.16a )

This relation for JB ( 1, 2 ) may then be used directly in the

solution for all the JB's.

In the solution for the location of the boundary, the first
step necessary is to develop an expression for the mass balance by

using the new relation for 60.'

The mass balance representing the amount of fluid entering
the system at z = 0 during one time step has the form:
IM 1
ZZ. 0 (JB(I,2)-1)ayaz-p (JB(I,1)-1) 4y Aij

I =2

y
j w Cy,t)dy de (4.17)
y
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The same boundary leyer velocity profile as before is used, but is
now fitted to a growing 60. The relation is:
y 1 y 3
v (y, €)=1-3/2 () +% (5) ( 4.18)
o 0
The mass balance then becomes:
M
p Ay Az [JB (1,2)-3B(1I,1 )] ( 4.19)
I =2
t + t = -
frA Xr 60 y y 3
Ly j 1-3/2(—)+%(—) [dy dt
= $ §
t y=20 : o o
Integrating with respect to y the equation is:
M _
Ay Azi [JB(I,Z)—-JB(I,I)]
I=2
t+ AL 2 4 4 5.‘
r : 3 y 1 y o
= | y - — + 3= T dt
u{ 28 2 28 4
[ o o o
tr+ At
=j' ©3/8 68 dtwithso=4-\/t ( 4.20)
T . , .

Since GO is known as a function of t, this expression may be
integrated to give a relation involving the time at the beginning

.
and end of the time step. If however, the value of the integral is

approximated by averaging the value of the integrated at the two
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limits and multiplying by A t, a much simpler expression results.
The equation then has the form:
R _
AyAzX [JB(I,z)—JB_(I,;)]
I=2
60‘ t+A¢t B 6o|t
=3/8 At — . :
' 2 (4.21)

Since A z = A t, these may be cancelled on both sides of the

equation. Substituting the expression for S; at both times, the

equation becomes:

™
Ay Z [JB(I.,z)r«JB(I,'l) ( 4.22)
I=2 '
(JB(1,2)-1)Aay+ (3B (L, 1)~1)ay
= 3/8 — U S S SO S
2
° or
L8y _
Z [JB(I,Z)—.JB(I,I) =3/16 | JB (1,2 ) -
I=2 : '
JB(1,1) -2 ( 4.22a )

It is seen from the above relation that the overall mass
balance now. allows for an increasing amount of fluid entering at

z = 0 during a time step. The use of the modified mass balance and

B TUREN
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the expression for 50 should enable the numerical solution to be

)
i

carried out for a higher number of time steps. The velocity profile
at z = 0 is calculated in the same manner using the dimensionless
profile LA

In using the new relations for the numerical solution, the

initial approach is to let JB (1, 2 ) =1l at t = 0 and then calcu-

‘late JB ( 1, 2 ) after cach succeeding time step from the formula.

This approach is reasonable because it lets 60 =0 at t = 0 and
then grow directly according to the boundaryAlayer relation. This
is more physically realistic than the method used in the original
solution by Xilleen ( 7 ). .The procedure for the rest of the
solution re&ains the same except for use of the modified mass
balance in the boundary deternination.

The first work done incorporating the above relations into

the numerical solution demonstrated that the values assigned to w

on the first row by the boundary conditions greatly affected the
results. Consequently, it was here that the investigation
centered. .

+

Initially w = 0 at z-= 0 for all y. At t =0, w has nonzero

values for a few increments, Several different values of the

velocity profile at z = 0 were used to start the numerical solution.

These were:

1. w= 0at z = 0:
2. w=0,5atz=20
3. w=1.0at z=20

4. A linear velocity profile
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None of these produced significantly better results than using the
original velocity profile W All of this seemed to indicate that
an established velocity profile for a significant number of incre-

ments during the first time step was needed. Since the relation

I

for the number of increments, JB (1, 2) 1+ 4/Ay'\/( IM~-1)aAt
progresses relatively slowly if J3 ( 1,2 ) is equal to unity
initially, it was evident the model needed to be modified.

After a thorough study of the various possibilities, the
following model was proposed:

1. Let JB (1, 2 ) have a sizeable number of increments

initially.
2. Keep JB (1, 2 ) equal to this value dntil enough time

steps have elapsed so that JB (1, 2 ) would egual to

this value if calculated by the equation,

JB(1,2) =1+ C4/ay) (M -1)bt

3. Then use the expression for JB ( 132 ) thereafter.

This model then requires that a beundary layer of signifi-
cant distance be formed almost immediately and after a short beriod
‘of time, it begins to grow. This ;s more physically realistic than
the original model in which a boundary layer of significant thickness
is formed quickiy and remains constant for all fime.

The number of increments to which JB (1, 2 ) is initially set

is of course dependent somewhat on the size of the increments used.

This has to be determined for each individual case but the magnitude

of 8 is roughly the same.
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As the boundary layer begins to grow, the solution can be
carried out much further than was originally possible. The problem
of insufficient fluid for distribution among the rows does not
appear in the amount of time which elapses before the enlargement
of the boundary layer starts.

In the original numerical solution, another problem which
limited the solution was the calculation of values of v from the
continuity equation near the interface. This problem is one charac~
teristic of boundary layer flow. Discussion of this may be found
in Schlichting ( 10 ), Rouse ( 9 ), and others. The values of v
are computed from the differences in the values of w on two adjacent
rows, and each succeeding valué includes 211 the diffefences at
lower values of y. As a result, values of v near the boundary
become abnormally large. The transformation of the equations by
using potential and streém functions to obtain é second order
equation does not produce significantly better results. It is
not possible to determine exéctly_the limits of the magnitude of
v near the boundary. However, looking at the original drainage
problem, it is evident that there is more of a tendency for fluid to
move in the x~direction than in the y-direction. Hence it is
reasonable to aséume that the greatest value of v would probably not
exceed the greatest value of w which is unity. Certainly the

absolute value of v would be no greater than the dimensionless

value of two for this problem.
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The first place these erroaeous values of v begin to affeét
the solution is in thevmomentum equation calculations for w. These
errors are then carried into the boundary calculations.

In the system of equations devéloped for the WF subroutine
which is solved using the Thomas Algorithm, the values of v appear
in some of the algebraic expressions which are coefficients of the
unknown w's. In these expressions where v;s appeax, the terms
involving the v's are usually small compared to the other terms
and do not significantly affect the calculations at all. If however,

the values of v become very large, then the whole calculation

for the w's becomes erroneous. Since relatively small

()

procedur
values of v, whether correct or not, do not significantly affect the
calculations to a great degree, a procedure was used in which very

large values of v near the boundary were limited to series of values
ranging up to two. While it is realized that these values of v are
not necessarily correct, the purpose is to allow a further study of
the numerical solution. Wiihout doing this, it would be difficult

to determine che real limits of the solution.

These "clamped" values of v were used in the original numer-
ical developed by Killeen (7) and a slight improvement resuited.
The solution could be carried ogt for a few additional ﬁime incre«
ments. This adjustment however, showed that the real source of

trouble was not erroneous values of v near the interface, but was

the problem of insufficient fluid entering the system.
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It wes felt necessary to limit these values of v near the

boundary from being too large in any subsequent work in order to

determine the limits of the numerical solution for the revised
model.

The aﬁove discussion essentizlly covers the development of
the expanded model with regard té the derivation of relations used
-and numerical techniques for solution. The results of thié model

A\

along with a comparison with the model of Killeen ( 7 ) are

presented in Chapter V.

[ Re———
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RESULTS CF THE ISOTHERMAL DRAINAGE PROBLEM

There were two major objectives involved in the study of the
isothermal drainage problem. First, several areas of the original
solution by Killeen ( 7 ) were investigated. This included a study
of iteration procedures in the momentum eqﬁatioﬁ and the choice of
the velocity coefiicients in the momentum and boundary equations.

; After this was done, the feasibility of applying boundary layer
theory to obtain a better model was determined. The general result
of both of these studies was to obtain a solution which approximates
the position of the boundary more closely and which lasts for longer
periods of time, depending on the particular set of conditiomns.

The study of the original solution‘was discussed in Chapter
IV. The major improvemerts over the original solution were:

1. Elimination of much unneeded storaée space for data in

the computer solution.

- 2. Determination of the lower limit ¢f the number of itera-
tions required for the calculations of the velocity
coefficients.

3. A better choice of the veloc{ty coefficients in the

o - . -

{ boundary equation.
4, Determination of the actual limits of the numerical

& : v
solution without interference from erroncous values of

~ mpa

v near the boundary.

e

34
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"In addition, a new algorithm was developed to solve the
boundary system of equatioﬁs. This is discussed in Chapter VI and
Appendix A.

As discussed in Chapter IV, the major revision in the model
is to let the value of 50 be fixed initially and grow according to
a boundary layer relation after a certain number of time steps.
The lower limit to which 60 can be set initially was an important
part of this study. This limit depends both on the size of the
increments, A y and A z, and their ratio. The value used in the
original solution was §_ = 1, sohthat JB(1,2)=1~+1/4ay.
This value was used as an upper limit for the initial size of 60 in
the new mcdeli. For any éhoices of increment sizes, the solution was
investigated for a wide range of values OE’GO from unity to zero.
Three different sets of conditions which are typical are used to
present these results. The values of the J3's were obtained as
computer.output. The form of these is the same as those presented
by Killeen ( 7 ). .This output is presented for several runs in
Appendix B. TFor each of the sets of conditions, the resﬁlts for
the upper limit, 60 = 1, and the lower limit are presented grgphically.

These runs are as follows;
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Run ' y z Ay /A z Initial JB (1)
1 1/24 1/38% 16 ' 10
2 1/24 1/384 16 26
3 1/48 1/384 8 20
4 1/48 1/384 8 49
5 1/48 1/768 16 ‘ 15
6 1/48 1/768 16 | 49

In Figures 5-1 to 5-6, the position of the boundary at
several different time steps 1s presented for each o the runs. In
each case, the curve lzbeled with the highest number of time steps

represents the extent of the solution for those conditions.
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he graphs that the solutions with a

rt

It can be seen from
lower value of 60 at t = 0 are substantially better than those at
the higher values. These lower values of 60 are also more physically
realistic since the boundary la&er is very small at t = O+. In
elrost all of the studies made, 1t was found that the number of time
steps for which 60 is constant ranged from about three to five. These
are relatively smell numbers so that the boundary layer equation is
applied very quickly. t is also seen that there is a general con-
sistency as to the initial size of 60 for the different sets of
conditions. For example, JB ( 1, 2 ) is 10 with A y = 1/24 for
Run # 1 and JB (1, 2 ) is 21 with Ay = 1/48 in Run # 3.

In Figures 5-7 to 5-9, a comparisoa of the results of the
new solution and those of“the original solution is made. The
cuyves for the original solution are those. for runs made with
“clamped" values of v near the boundary. Thus the extent of the
original solution without interference from erroneous values of v

near the boundary can be sean. These graphs show the improvement

[}

in the isothermal solution with the new model. The boundary ?s
more accurately described, particularly at the lower time levels
'because the initiel size-oé 60 has a significant effect during the
first part of the solution. Also, the extent of the solution is

roughly doubled in most of the runs.
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RESULTS OF THE GENERAL PROBLEM

The study of the nonisothermal drainage problem‘consisted of
two main parts. First the energy equation was added to the system
and then the mass added to the system due to vapor condensation was

~included in the overall mass balance to obtain the general solution.

Addition of the Energy Equation to the System

The numerical techniques used to include the energy equation
to the solution were discussed in Chapter VI. This equation includes
the combined effects of energy transport by conduction and by bulk
flow. The temperature proéiles obtained are thus a complex function
of both of these effects.

At any particular row at any time, the value of the temperature

) is‘eqpal to Ts at the interface and decreases to Tb at the wall. The
type of profile obtained was found to depend mainly on the direction
of flow in the y-direction. The velocity in the z-direction affects
only the &agnitudes of the temperatures at any row as a whole since
fhe fluid flow in the z—diféction is always positive.

It was foupd that if almost all of the values of v at any
w were of the same sign, a monotonically decreasing

particular TO

temperature proflle was obtained. However when a range of positive

values of v occurred for part of a row and were followed by a series
of negative values for the remainder of the row, in many cases
perturbations in the temperature profile around the point of change

This is explained physically in the following mamnner.
62

resulted.

L
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If the velocities in the y-direction at any row are all of the

same sign indicating all of the transverse flow is in one direction,

then the type of profile mainly depends on conduction effects and

thus decreases in a regular manner from the value of Ts at the sur-
face to the value of Tb at the wall. When the velocities are posi-
tive for part of the row and hegative for the remainder, there is a

tendency for energy to be stored at and around the points where the

fluid flow from both directions meets. This is reflected in higher

L ] E_____ 1 T

temperatures at such points.
} In Table VII-1, typical values of the temperatures at an
arbitrary row are shown together with the corresponding values of
v. 1In this case, since there are not ranges of velocities which
are opposite in sign, the temperature profile is of the monotonically
deéreasing type. |

In Table VII-2 the temperature values together with the

e e

values of v afe shown for the case of 6pposite flows in the y-

i : direction. It is seen that the point where the temperature discon-
tinuity occurs corresponds to the point where a significant range
of positive and negative velocities meet. It was found in general

that this type of discontinuity occurred when there were at least

st

four or five successive points with velocities of negative sign,

indicating a significant flow toward the wall at those points.

—-
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JB (1)=10

v (I, J)

0.0006
0.0175
0.0549
0.1035
0.1509
0.1801
0.1593
.0.,1161

0.4182

Table VII-1 - Temperétures and Velocities for a Monotonically

Decreasing Temperature Profile

-
J T (I, J)
1 0.8000
2 0.8000
3 0.8000
4 0.8000
5 | 0.8000
6 | ~0.8000
7 0.8002
8 0.8024
9 } C 0.8225

L
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JB (1) =21
J T (I, J) VI, J)

1. 0.8000 0.0034
2 ' 0.8000 0.0435
3 ' ~0.8000 0.1019
4 0.8000 | ©0.2310
5 0.8000 0.3499

6 ' 0.8000 . ' 0.5251

8 0.8001 : 0.5001

9 0.8008 ' 0.3853

10 0.8049 ~0.1755

11 0.8221 -0.1288
; ' 12 0.8034 : ©-0.3628
\ ' 13 | 0.8005 -0.4329
14 ~0.8001 ' -0.3945
15 ’ . 0.8000 20.3750
16 ' 0.8001 ~0.4053
17 : 0.8006 -0.4263
18 . 0.8028 ' -0.5373
19 . 0.8126 : -.08523

20 0.8530 ~0.4896

Table Vil<2 -~ Temperatures and Velocities for a Temperature

L_ Profile with Perturbations

I
|
F
F
| '
t
'
|
i
|
|
|
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General Solution for Drainage with Condensation

The method used for approximating the amount of vapor
condensed during any time step was discussed in Chapter VI. 1In
the solution for the location of the boundary, the equation most
affected was the 6verall mass balance which relates all of the unknown

boundary values. It was found that the system of boundary'equations

as a whole is very sensitive to changes in the overall mass balance.

Aftef testing the solution for the same range of values of
increment size and ratio that were used in the isothermal solution,
two general changes were noted.

First it was found that in many cases a higher initial value
of 60 had to be used. The value df 50 had.to be changed more for
higher values of the ratio Ay / & z. The other general result
was that the sglution did noﬁ last quite as long for any of the
sets of conditions. This was probably due to the many additional
calculations involved which produced additional error; due to
truncation, etc.

Computer output showing boundary values for several segs
of conditions is shown in Appendix B. ‘These are of the same form
as those presented for the isothermal case. .

In Figurés 7-1 to 7;3, the position of thé boundary at
‘different times is presented graphically. The conditions of
increment size are thé same as those in Cﬁapter,v for the isothermal
case. The corresponding isothermal boundary positions aré given

along with the various curves so that they can be easily compared.
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These show the changes in the boundary position due tc vapor
condensation.

In addition to the previously mentioned studies of the con-
densation model, the effect of changes in Tb on the solution was
investigated} In the results already presented for this model,

Tb was set at 0.8. The effect of increasing Tb from 0.8 up to 0.95

. using increments of 0.05 was investigated. It was found that the

only difference in the solution was that a small number of the
rows contained one less element of fluid. This finding confirmed
the consistency of the solution, but the curves for higher temper-
atures vary only slightly from those at 0.8 so that it is not felt
necessary to preseint them..

. As Tb was 1owe#ed, it was found that the addition of one
increment at several rows occurred. Howevef at a value of ahout
0.7, the boundary solution breaks down. This probably occurs
because the model itself tends to become unrealistic when high
temperature gradients are present.

In_addition to the results discussed above, the variations
in the solution for different values of the constants E1 and E4
were checked. These values of course depend on the particular
liquid and the general range of temperatures involved.

For El, slight variations in the solution occurs for the
range 0.1 to 1.0 The constant E4 is much smaller with a corresponding

magnitude of output 0.001. For higher values, thé solution breaks

down because of the previously discussed sensitivity of the over-

all mass balance to changes in the amount of fluid entering the

system during a time step.
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In general, it was found that the numerical solution is

not constrained to one particular liquid or to one set of conditions.
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PROGRAM ORGANIZATION

In the preceding chapters, a description of the physical
problem was presented along with the finite difference techniques
to be used for the numerical solution. The calculations were
performed on an IBM 7044 computer using instructions written in
FORTRAN IV. Program listings are provided in Appendix B for the
two new subroutines developed for the general solution. Listings
are also presented for the main program and for the subroutine for
the boundary location, since these had some major changes from
their use in the original solution.

To provide a clear picture of the overall solution, the
general steps.which are followed are given below:

| 1. Computation of w at all rows containing liquid using the

WF and COEFF subroutines. | |

2, Computatibn of v at the same row using the VF subroutine.

3. Computation of T at the same rows using the TF an§
TCOEFF subroutines.

4, Calculation of the new bounda?y position at the new
‘time level for all the previous rows‘plqs one additional
row.at the top; using the GETJB subroutine.

5. Repetition of the computations for w, v, and T at the

‘grid points in the liquid for the new region.

73
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CONCLUSIONS

The most important conclusions which were drawn from this

study were:

1.

The study of the original isothermal solution provided
better knowledge as to the convergence of iterations
procedures used in the moving boundary problem. This

could be useful in solving other non-linear problems.

A better model for the isothermal drainage problem was
sucessfully developed by using boundary layer theory to.
describe the fluid flow at the surface of the reservoir
(z=0). This solution is more physically realistic
and has the additional advantage of lasting for longer

periods of time.

The energy equation was sucessfully incorporated into
the solution of the problem. This provided temperature

values at all points in time and space in the liquid.

A workable model was developed for the overall solution

which included mass added to the system due to vapor

condensation,

75
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NOMENCLATURE

space coordinate

space coordinate

transformed space coordinate
time coordinate

L]

x-—-component of velocity
y—-component of velocity
z-component of velocity

temperature

interface temperature
wall temperature

draining velocity of reservoir

‘a constant equal to k / pc

a constant equal to g (p ~pv ) / p

a constant equal to u / p
a constant equal to k / hp

thermal conductivity of liquid
heat capacify of liquid

liquid density

vapor density

liquid viscosity

gravitational acceleration



i

heatAof condencsation

kinematic viscosity

boundary position of the liquid-vapor interface
boundary position for particular value of i
sdbséript denoting the row number in the z-direction
subscript denoting the row number in the y—direction

FORTRAN variable denoting the uppermost row at any time

FORTRAN subscript corresponding to i

FORTRAN subscript corresponding to i

coefficients in the tri-diagonal system of equations

constant vector in the tri~diagonal system of equations
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Potential Flow Problems
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Numerical Solution for Flux
Components in Potential Flow*

By Dale U. von Rosenberg

Abstract. Values of the flux components are often desired in potential flow prob-
lems. Second-order correct finite-difference analogs are developed for the differential
equations defining these flux components. Two iterative methods of solving the
resulting finite-difference equations are presented. Experimental results indicate the
most efficient value of the iteration parameter and demonstrate that the number of
iterations required is approximately proportional to the square root of the number
of points in the grid.

1. Introduction. Many important physical problems can be described by a poten-
tial field. Included in these are the flow of heat, the flow of electricity, and the flow
of fluids in porous media. For ideal fluid flow problems a potential is defined only to
aid in the solution, and the velocity is the dependent variable of interest. Even in
cases where the potential corresponds to a real physical variable, such as heat con-
duction and flow of fluids in porous media, the flux is often the variable of interest.

For two-dimensional Cartesian co-ordinates, the differential equation which de-
fines the potential is

AR S
® 6y2 + 07
where 7 is the potential, y is one Cartesian co-ordinate, z is the other Cartesian co-
ordinate. ’

The flux components.can be defined in terms of the potential as

=0,

. = 39T
(2a) v = kay’

aT
(2b) w~—k¥,

where v is the flux component in the y direction, w is the flux component in the 2
direction, k is the transport coeflicient.

A great number of potential flow problems can be solved by various analytical
techniques. However, a numerical solution is required for many boundary condi-
tions. A number of methods have been developed for numerically solving Eq. (1) for
the potential. When values of the flux are desired, the flux components must then
be determined from the numerical solution for the potential by finite-difference
analogs to Egs. (2a) and (2b).

Received July 15, 1966. Revised February 13, 1967. :
* This work has been supported by NASA Contract NAS8-20136 issued at Marshall Space
Flight Center, Huntsville, Alabama.
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2. Equations Defining Flux Components. The method described in this paper
yields a numerical solution directly for the flux components fron the defining partial
differential equations. Since there are two flux components in the two-dimensional
case, two equations are required. The first of these results from the continuity
principle and is the equation which yiclds Eq. (1) in terms of the potential. In terms
of the flux components, this equation is

@3) A =0.

The second of these equations is the irrotationality condition which must hold in
order for the potential to be defined by Eq. (2). This relation is

(4) =Ly,

These equations are completely first order, and they contain the first derivative of
each dependent variable with respect to each independent variable.

3. Boundary Conditions. Common boundary conditions used in conjunction
with Eq. (1) are the specification either of the potential or of the normal derivative
of the potential along the boundaries. The most general condition, of course, is
specification of a relation between these two along the boundaries. Specification of
the potential along a boundary is equivalent to a specification of the tangential flux
component along that boundary, while specification of the normal derivative of the
potential is equivalent to a specification of the flux component normal to the bound-
ary. The numerical method of solution for the flux components, described herein,
has been tested with several types of boundary conditions, including the general
type for which a relation between the two flux components is specified.

Yor purposes of illustrating the numerical method, the boundary conditions
used are

(52) w(z, 1) = f(2),
(5b) w(0,y) = 9@,
(5¢) v(z,0) = p(2),
~(5d) v(L,y) = ¢(¥) -

These boundary conditions are equivalent to a specification of the potential along '
the adjacent sides for y = 1 and z = 1 and of the normal derivative of the potential
along the other two adjacent sides wherey = 0 and 2z = 0.

4. Finite-Difference Equations. A set of grid points with equal increments in the

. two directions is imposed on the region. This giid is illustrated in Fig. 1. Indices are

used to designate location in the grid. These indices are defined by

(6a) 2;= (G —1)Az forl Si<R,
(6b) : yi=(0G-—1Day for1<;=58,
(6¢) with Az = Ay.
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For the case of a square region, R == 8§, but these limits will be used as given in Eq.
(6) so that the method can be applied directly to a rectangular region. Two sub-
scripts are used with values of the dependent variables. These are defined as’

(7a) wi; = w(zy, ;) ,

(7b) vi; = v(z4 ¥j) -
The boundary conditions of Eq. (5) are shown in Tig. 1 in terms of the discrete
variables.

I+1
+\ + y A
A
\\ 7
x
Z + (/ N +
- Ve Y
I -1 X
* + b
-2

Y —

Figurg 1. Finite-difference grid

The first derivatives of Eqs. (3) and (4) are replaced by centered differences.
These differences are written about the point z;-1/s, y;_1/» which is designated by
the cross (+) in Fig. 1. However, only values of the dependent variables on the grid
points are used in the finite differences. This method of writing the finite differences
has been described previously for equations describing transient, countercurrent
flow problems [1]. The analogs for the derivatives of v are

w llvij—viy; | Vi — v:‘—l.;‘—l]

(8a) 9z~ 2 [ Az a Az ’
o 1|vi;—vij1, Via,; — vi—l.;’—l]

(8b) o >3 l: Ay + Ay .

Those for w are similar. These analogs are second-order correct. The truncation will
be discussed further in the next scction.

Two finite-difference equations can be written for each square of four points in
the grid. After the space increments and the factor 1/2 have been eliminated, these
equations become

9) wi; — wia; + Wi — Wig o T Vo~ i v — Vi1 =0,
(10) wi; — wy o1 + Wima,; — Wiy, o1 — vijt Vi — vt via 1 =0,
Each equation contains eight values of the dependent variables, two at each of the
four points. These equations, together with the boundary conditions, define the

values of w and » at all pointsin the grid. Since the boundary conditions are specified
on opposite boundaries in both directions, a simultancous solution of all the equa-
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tions is necessary. Two iterative methods of effecting this solution are presented in
later sections. ’

5. Truncation Error. The complete expressions for the first derivatives are ob-
tained from a Taylor series in two independent variables. The truncation error is
obtained by substituting these expressions into the original differential equations.
The expressions for the errors can be simplified by use of relations obtained from
repeated differentiation of Egs. (3) and (4)." The truncation error for the finite-
difference analog to Eq. (3) is

© Az dn42 <a4n+3w> 2n4-1 , 1
) B ‘2,22(2) ) & D @l =2 9

and that for Eq. (4) is

L uo !2 4n42 (a4n+3v\ 2n4-1 , i
(12)  Bi=-22, < o) amm) & Y G = m

0 ~ r=0

6. Corresponding Difference Equation in Potential. A finite-difference equation
in terms of the potential can be obtained from the finite-difference analog to Eq. (3)
and to analogs to Eq. (2). Second-order correct centered difference analogs to Eq.
(2) are used to obtain the flux components from the potential. The location of the
points used in these analogs are shown in Fig. 2. In order for the flux components at
the interscctions of the grid lines to be determined from values of the potential by
these centered analogs, the potential must be known at the points denoted by the
crosses (4). A typical equation for determining & flux component is

1l _1_ Ti+l/2,j+l/2 — T{+1/2.j—l/‘2 Ti_l/z.j+1/2 — Tf_l/‘z.j—l/z)
a3) o= —i{1)( . + s .

When such analogs for the flux components at the points denoted by circles (O) in
Fig. 2 are substituted into the finite-difference equation for Eq. (3), the finite-

Je1 Veo % J=s
I - t=R
W
- J 1 /\/ 4
V=P, O Wis=H
V4 + \%
1-1 41"-\/
t | "=
2 Jtt J
—ay =
[o] 1=1
. Wy =8,
‘0 Y —— 1

Ficure 2. Location of points for potential
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difference equation for the potential is obtained. This is

(14) Tirrz,ivr/a + Toprsogimsre + Tiatryioare + Tista,jmsie — 4T i 1/2,5-1/2
2(ay)’

This equation is the familiar five-point analog to Iq. (1) with the grid lines rotated
45° from those used to define the flux components, as shown in Fig. 2. Furthermore,
the increment size is 2 times that used in the grid for the flux. When analogs simi-
lar to Eq. (13) are substituted into the finite-difference analog to Eq. (4), the irrota-
tionality condition, all terms cancel as they should.

=0.

7. Nature of Iterative Methods of Solution. As mentioned previously, two iter-
ative methods of solving Egs. (9) and (10) will be described. The first method effects
the simultancous solution of the finite-difference equations from a single row in the
grid. In the second method, the equations from two adjacent rows in the grid are
solved simultaneously. The methods can be formulated and carried out either in the
y-direction or in the z-direction. In fact, the convergence is more rapid if the itera-
tion is carried out alternately in the y-direction and then in the z-direction. How-
ever, iteration in only one direction is convergent. In the presentation of the methods
In this paper, the solution is given for one or two rows of equations in the y-direction.

The iteration procedure is begun at a boundary, where the values of one of the
flux components are known for a whole row of points. The other flux component is
unknown along this row, as arc both components en the second row of points. In the
equations presented below, the iteration is begun at the z = 0 boundary, where w is
given by the boundary condition. See Fig. 1. The finite-difference equations, Egs. (9)
and (10), relate the dependent variables along these two rows of points. However,
there are three rows of unknowns and only two rows of equations. It is necessary,
therefore, to assume values of v along the second row of points. Values of » on the
first row of points and w on the second row are then computed from Egs. (9) and
(10) based on this assumption. These computed values of w are then used with as-
sumed values for » on the third row to compute values of w on the third row and v
on the second row. This procedure is continued across the region. For the last row of
equations, however, the values of v do not need to be assumcd, since they are given
by the boundary condition, as shown in Fig. 1, for z = 1. The conditions on each
boundary are thus introduced once on each sweep across the region. On the next
sweep of the region, the values obtained in the first sweep arc used in place of the
assumed values. .

In order to increase the rate of convergence, an iteration parameter, e, is intro-
duced into the Eqs. (9) and (10). These equations become

(m+1) (m+1) (m+1) (m+1) (m) (m) L, (m+1) (m+1)
(93,) ’w:m; - w;'Tl,j + wi’:'—l,‘“ Wi, -1+ — vi’."j—l + Vio1,j — ';fl.j—l
(m) (m+1) (m) (m4+1)yy
= e[(wij1 — wiiy) + (v, — vii1.5)) ;
< npy(m+1) (m+1) (m+1) (m+1) (m) (m+1) (m) (m+1)
(10a) Y&~ wiitt Fwilny — wl — o0 0T — o o,

= = @ — wTE) + @ — o).

The superscripts denote the level of the iterate. On the left side of the equatioﬁs,
only two values at the old iterate (denoted by m) are used. These are the values of »
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on the 7th row which were assumed for the initial sweep. The values of w on the
(z — 1)th row are known at the new iteration level from the computations on the
previous row of equations. The values of w on the /th row and » on the (z — 1)th
row are to be computed from the simultaneous solution of this row of equations. The
iteration parameter is introduced into the right sides of the equations as a coefficient
of the differcneces between the old and the new values of one » and one w.

The values of v and w used in this iteration term arc not located at the same
point in the grid. Reference to Fig. 1 will show that the v appearing in this term is
located at the point designated by the square () and the w at the point designated
by the circle (O). Theloecation of the » is the one point of the four in the square which
is farthest from the boundary conditions specifying » in both the y- and z-directions.
The w point is similarly located.

8. Single-Row or Point-Wise Iterative Method. The method in which a single
row of equations is solved simultancously is the simpler of the two. Because of the
nature of the equations, the method is actually a point-wise or explicit method. The
first stcp in developing this method is to add Egs. (9a) and (10a). This resulting
equation contains only two of the four valucs te be computed. When multiplied by
one-half and written for j, it is '

= (m+1) (m+1) (m+1) (m) (m)
(15) wiy o+ A+ el = w:ff 1 -+ v+ €0ty
Another equation containing the same two unknowns can be obtained from one-half
the difference between these equations written for j + 1. This equation is

(16) (1 + Qwd? — o7 = Wy — o+ ') .
These equations can be solved simultaneously to yield, for2 = j £ (S — 1),

miy _ (144 — B

1 1,7 = b

a7 : v 14+ (1 +¢)?
miy _ A+ A+ B

(18) wl-J 1 + (1 + 6)2 ’

where 4 = w1, + M+ @™, B = wr T, — o™ 4+ el
The boundary conditions specify v;—1,1 = pi—1 and w;s = fi. The value of w at
the left boundary can be obtained from Eq. (16) as

(19) WD = (i + w8 — o7 +wi)/ (L + 6.
Likewise, the value of » at the right boundary can be obtained from Eq. (15) as
(20) pTR = (—fi F 0TI+ o+ D) /A + e

Egs. (17)-(20) provide the relations necessary for computing the flux components
by the single-row iterative method.

9. Double-Row Iterative Method. The double-row method utilizes the explicit
nature of the equations of the single-row method. The values of w on the ¢th row are

* expressed in terms of the values of w on the (¢ — 1)th row and v on the ¢th row by

Egs. (18) and (19) with ¢ = 0. These are substituted into Eqs. (15) and (16) written
between the sth and (¢ 4 1)th rows. The resulting set of equations ean be solved to
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yicld values of w on the (7 + 1)th row and values of v on the 7th row. The solution of
thesc equations requires values of v at the old iterate on the (z 4 1)th row and values
of w at the new iterate on the (7 — 1)th row. Values of w on the 7th row can then be
computed from the values of v at the new iterate on the ith row by Eqgs. (18) and
(19) with e = 0. Likewise, the values of » on the (7 — 1)th-row can be computed
from these values of # on the ith row by IEgs. (17) and (20) with ¢ = 0. In this man-
ner, values of » at the old iterate are required on only every other row of points for
each sweep across the region. This method, consequently, converges more rapidly
than does the single-row method.

The dircet solution of these equations has been effected by separating the com-
plete system into two bi-tridiagonal systems of equations. The general equations of
each system are the same, and they arc

(m+1) ,(m+1) (mt1) 1, (nd1)
(@) Ty — R G el - Wi

. (m+1) (m+l) (m) (m) {m) (m)
= w2 — W je) 4+ vl v eV — wihil;

— (1 + Qwiihe + 3wht) + @ + 3005

- (m«rl) (m+1) y 2) o, (m) (m)
= w e + W) + 250 4 200 — W]

(22)

In one system the j index takes on odd values, and in the other system it takes on
even values. The boundary equations of each system are obtained from suitable
combinations of the original equations.

A number of solution algorithms have been developed for these systems of equa-
tions, but all of these develop significant round-off error for grids of 20 points in each
direction. Work is continuing in an effort to find satisfactory algorithms.

10. Experimental Study of Convergence Rate. A number of runs were made on
an IBM 7044 computer to study the number of iterations 1equu ed for convergence.
The boundary conditions of the test problem are

(23a) ' wlz, 1) = z,
(23b) w(0,y) =0,
(23¢) v(z,0) = 0,
(23d) v(l,y) =

The solution to Egs. (3) and (4) with these boundary conditions isw = zand ¢ =
—y for all y and 2. Since all derivatives above the first are zero for this problem, the
numerical solution will converge to the analytic solution for all grid sizes. Further-
more, this solution'is a particularly easy one to check for convergence. The initial
guess used in all the test runs was v = w = 0 at all points in the grid.

The first purpose of this study was to determine experimentally the most ef-
ficient value of the iteration parameter, e. The second was to compare convergence
rates for the double-row method and for the single-row method. The third purposc
was to compare the cffect of grid size on the number of iterations required for con-
vergence. _

The runs made to determine the most efficient parameter were made on a square
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grid with ten increments on cach side. Consequently, there were 200 values of the
dependent variables to be determined. The method diverged for the two negative
values of the paramcter tested, and it converged for all positive values and for zero.

For ¢ = 0, the values of the dependent variables approached the correct values
asymptotically from the initial guess of zero. For the three positive values of
tested, namely, %, 1, and 2, the intermediate values of the depbndeut variables, in
some parts of the grid, inercased above the correct values and then converged to
those values by a damped oscillation. Furthermore, convergence was more rapid for
all three of these values than for e = 0. Of the three positive values, e = 1 was the
most efficient. At the end of 20 double iteration steps (one in the y-direction and one
in the z-direction) no value of the dependent variables differed from the correct
valuc by more than two in the fourth place. Most values were closer than this. For
the other two values of ¢, some values of the dependent variables differed in the
third place after 20 steps.

The double-row method converged in approximately half as many iterations as
the single-row method. For ¢ = 1 and a 10 X 10 grid, the values obtained after ten
double steps by the double-row method were approximately the same as those ob-
tained after 20 double steps by the single-row method. After 20 double steps by the
double-row method, the values were almost completely converged to six piuces.
Only nine of the 200 values differed from the correct values by more than threc in
the sixth place. The largest difference was seven in the sixth place.

The number of iterations required for convergence for a square grid is approxi-
mately proportional to the number of points along one side of the square or, conse-
quently, to the square root of the total number of points in the grid. Tor a square
grid with 100 points on a side, 200 double steps were required to obtain the same
extent of convergence as was obtained by 20 double steps with a 10 X 10 grid. In
both of these test runs, the single-row method was used with e = 1. Similar results
were obtained for the double-row method with ¢ = 0 for square grids with 10 and
20 points on each side.

11. Experimental Study of Truncation Error. A study of ‘the truncation error
was made for flow near a unit source at the origin. The exact solution for this prob-
lem is given by

(21) w2/ + 2,
(25) v=y/@ +2".

The flux components were computed in a square region with boundaries at y = 1/2,
z=1/2,y = 39/2, and z = 39/2 for increment sizes of 1,1/2, and 1/4; and the re-
sulting values were. compared with the exact solution. The truncation error was
approximately 30%, 7%, and 1.5% for the three grid sizes; this variation is in line
with the second-order correct nature of the finite-difference analogs. The single-row
method of solution was used, and round-off error was negligible even for the largest
grid of 77 points per side.

12. Comparison with Alternating-Direction-Implicit Method for Potential. The
solution for flux components was compared with the alternating-direction-implicit
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method of solution for the potential in a square region for equivalent boundary
conditions. The boundary conditions in terms of potential are

(26a) aty =0,07/0y =0 forallz,

(26b) atz =0,07/0z =0 forally,

(26¢) aty=1,T =0 forz <1,
(26d) atz=1,T =1 fory < 1.
Equivalent boundary conditions in terns of flux components are
(272) aty=0,v=0 forall z,

(27b) atz=0,w=0 forall y,

27¢) aty=1w=20 forz <1,

27d) atz=1,v=0 fory <1,

(27¢) aty=landz=1,v=landw= —1.

Numerical solutions were obtained for a grid of 20 increments per side; thus, there
were 400 points at which cither the potential or the flux components weie 16 be ob-
tained. The initial iterates for each method were essentially equivalent.

For the alternating-direction-implicit method the set of nine iteration parameters
which result in most rapid convergenee was used. This sct of pavameters is given by
Young [2]. Convergence was obtained in two cycles of the parameters or in 18 itera-
tions.

No analysis has been made to obtain a set of iteration parameters for most rapid
convergence in the solution for the flux components. Consequently, this solution was
effected using a valuc of unity for the parameter. Convergence was obtained in 30
iterations when the double-row method of solution was used. This method does not
compare unfavorably with the alternating-direction-implicit method, and the use of
a set of more efficient iteration parameters for the flux compouent method should
decrease the amount of iterations required. -

components in potential flow has been developed. Two iterative methods for solving
the resulting finite-difference equations are (described. Experimental results which
determine the most efficient value of the iteration paramecter and evaluate the rela-
tive efficiencies of the two iteration techniques are presented. These results also
show that the number of iterations required for convergence is approximately
proportional to the square root of the number of points in the grid.

13. Conclusion. An efficient numerical method for the determinalion of the flux
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Abstract— A numerical method for solution of flux components which is completely superior to a
method described previously has been developed. In some cases this method leads to a direct, non-
iterative solution of two-dimensional problems. It also has an advantage over the alternating direction
implicit method in that much larger space increments can be used in one direction than in the other.
Examples are given which show the application of the method to mixed boundary conditions, curved

boundaries, and a point source.

1. INTRODUCTION
VALUES of the flux components are often desired
in potential flow problems. The flux components
can be defined in terms of the potential which in
two-dimensional Cartesian co-ordinates is de-
fined by the differential equation

2 2
g + g =0, 1)
ay ¥4
where T is the potential, y is one Cartesian co-
ordinate, z is the other Cartesian co-ordinate. For
this co-ordinate system, the flux components are
defined in terms of the potential by

oT

v——ka, (2a)
oT

w——kgz, (2b)

where v is the flux component in the v direction,
w is the flux component in the z direction, & is the
transport coefficient.

A great number of potential flow problems can
be solved by various analytical techniques.
However, a numerical solution is required for
many boundary conditions. A number of methods
have been developed for numerically solving Eq.

(1) for the potential. When values of the flux are
desired, the flux components must then be deter-
mined from the numerical solution for the poten-
tial by finite-difference analogs to Eqgs. (2a) and
(2b).

Recently von Rosenberg[1] determined the
flux components by solving the differential
equations which define them. These are a contin-
uity principle

av  ow

and an irrotationality condition

ow v _

oy 9z )
Equation (3) is equivalent to Eq. (1), and Eq. (4)
can be obtained by equating the cross-partial
derivatives of Eqgs. (2a) and (2b).

These equations were solved numerically by
using second-order correct analogs based on the
grid shown in Fig. 1. Both flux components were
determined at all the grid points represented by
intersections of the grid lines in Fig. 1. The finite
difference analogs to the derivatives were cen-
tered about the center of each element; for
example, the point y; ;5. z;_y,, in Fig. 1. This

TThis work has been supported by NASA Contract No. NAS8-20136 issued at Marshall Space Flight Center, Huntsville,

Alabama. U.S.A.
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j-72

i+l

i-1/2

Fig. 1. Physical representation of centered differencing.

original method is termed the centered difference
method to distinguish it from the new method
described in this paper. The original method is
described in detail in Ref. [1].

During the investigations of algorithms for
solving the finite difference equations which
resulted from this difference scheme, it was
discovered that the linear algebraic equations can
be reduced to a set of equations which can be
solved for one-half of the total unknown flux
component values. These remaining equations
can be uncoupled to form two independent sets of
equations, each of which forms a complete set for
one-fourth of the total unknowns. This is the
origin of the idea for the “‘checkerboard™ method
for determining the flux components.

The “*checkerboard’ method is a second-order
correct differencing scheme with the difference
equations for Egs. (3) and (4) written about
different points in the finite difference grid. The
name is descriptive of the way the unknown
values of v and w appear on the grid.

2. DEVELOPMENT OF THE CHECKERBOARD
DIFFERENCE EQUATIONS

In the “checkerboard” method the continuity

equations and the irrotationality equations are

not centered at the same points on the integra-

tion net. This results in the v and w flux com-

ponents being determined at different points.
Only one value is determined at each grid point
as compared to two values for the normal cen-
tered difference approach. The pattern formed on
the finite difference grid by these unknowns
suggests the name “‘checkerboard.” Figure 2
illustrates this.

Ay
i+
i+l B S 4 Az
i
R

i g | o—y

o-w

z
) jtl j@l

Fig. 2. Physical representation of checkerboard
differencing.

The v's are determined at the grid points on
Fig. 2 indicated by the symbol ©, and the w’s are
determined at those grid points indicated by [J.
The finite difference equations for the continuity
equation are centered on the rows with the v's
and at the grid points falling between the points
where the v’s are to be determined. The point
indicated by the letter C is an example of one of
these points. The finite difference equations for
the irrotationality condition are centered on the
rows with the w's at the grid points between the
points where w’s are to be determined. The point
indicated by R is one of these points. The space
increments, Ay and Az, are as indicated on the
figure. Note that they are the total distance be-
tween any two unknowns on any row or column.

The v's and w's have different indexing
systems so that if the origin (z.y) = (0,0) has the
subscripts (i,f) = (1,1) then the variable w;; will
be located at the point given by

y;= (j— DAy
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The variable v; ; will be located at the point given
by

y; = (j—2)Ay.

The finite difference equations are developed
by substituting expressions developed from a
Taylor series in two independent variables for
the continuous derivatives in the differential
equations. The checkerboard difference analog
for the comntinuity equation centered at point C of
Fig. 2is

Vij — Vi,j—1

Ay

Wit1,; Wiy

Az

0. (%)

The difference analog for the irrotationality
equation centered at point R of Fig. 2 is

Vi 7 Vi1 Wijn T Wiy

Az Ay

0. (6)

These difference equations include only four
values of the dependent variables per equation
whereas the centered difference analogs[1]
include eight values per equation.

3. TRUNCATION ERROR
The truncation error associated with the finite
difference equation is that part of the Taylor
series truncated in forming the equations. The
truncation error for the finite difference analog to

Eq. (3)is
— = 1 AZ)2n( g2n+iy 32"+1w)]
Ey=- PR +
: Ilgl [(2n+ 1)'( 2 ay2"+1 6Z2n+]
(7)

and that for Eq. (4) is

_ > 1 A_Z 2n 62"+1v_62"“w
Ea= 2 [(2n+1)!(2) <az2~+' gyt )]
(8)

The expressions for the errors can be simplified
by use of relations obtained from repeated dif-

ferentiation of Egs. (3) and (4). Equation (7) can
thenbe expressed as

_ i 1 E an+2 / adn+3,,
Ea= 2"20[(4n+3)!<2> (624"“)]' )

The truncation error, E.,, for the centered dif-
ference analog for the continuity equation is [1]

_ % 1 {AZCD>4n+2<a4n+3w)
bep==2 % [(4n+3)!\ 2 9zt

(_1)n+1(2)2n+l:|‘ (]O)

Here Azcp is the space increment length used
on the centered difference grid.

In each of the series, (9) and (10), the first
term is much larger than the remainder of the
terms. These terms then can be compared to give
an approximate relationship between the sizes
of the truncation errors for the two methods. This
is

E; __1( Az )2' (1)

E¢p 2\Azep
Thus, for the same space increment the checker-
board method has approximately one-half as
much truncation error as the centered difference
method. The truncation error should be approxi-
mately the same when the space increments for
the checkerboard are V2 times those for the
centered difference method.

This analysis was the major reason for the
further investigation of the checkerboard method
for solving these equations. It was found that the
checkerboard solution is relatively much more
accurate than this analysis indicates.

4. CORRESPONDING DIFFERENCE
EQUATION IN POTENTIAL

It is interesting to see how the checkerboard
continuity difference equation looks when the
flux components are replaced by their definitions
in terms of the potential, Eqgs. (2a) and (2b).

On Fig. 2, the symbols x represent the points
where the potential is to be determined. Values
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of v and w have the same subscripts as before.
The subscripts for the potential are such that the
variable T; ; will be located at the point given by

zi= (i—1)Az
y;=(j— DAy.

The checkerboard continuity finite difference
equation centered at point C is

Vii— Vij—1 |, Wit1,— Wi
+ —l

Ay Az

0. (12)

The variables in this expression can be expressed
in terms of the potential. An example is

(13)

b=k <Ti.j+l — Ti.‘i)

Ay

These are substituted into Eq. (12) and Az set
equal to Ay to obtain

TivijtTij+ Ty + Ty ;—4T,
- == (),
(Ay)?

(14)

This is the familiar five-point finite difference
equation for Laplace’s equation. If, similarly, the
flux components in the irrotationality difference
equation, Eq. (6), are replaced by their definitions
in terms of potential, the equation reduces to
0 = Q asit should.

5. SINGLE ROW SOLUTION METHOD FOR
THE CHECKERBOARD DIFFERENCE
EQUATIONS

For purposes of illustrating the numerical
method, the model problem used is a rectangular
region of length « in the y direction and b in the z
direction. The boundary conditions are

w(0.y) = f(y) (15a)
w(z.0) = g(2) (15b)
v(by) =p(y) (15¢)
v(z,a) = q(2). (15d)

The boundary conditions are equivalent to
specifying the potential on the boundaries at
y=0 and z=b and specifying the normal de-
rivative of the potential along the boundaries at
y=gandz=0.

The boundary conditions for the model prob-
lem are split so that it is necessary either to
solve all of the finite difference equations simul-
taneously for all of the unknown values of the
flux components or to perform an iterative solu-
tion. Because of the large number of difference
equations involved in most practical problems,
an iterative solution is the most useful.

The iterative solution developed for the chec-
kerboard difference equations is an implicit, line
iterative method. The lengths of the space in-
crements are given by the expressions

2a
Ay—-(zs—_T—) (16a)
2b
Az—m (16b)
where
1=si <R
Isjs<S§

It was arbitrarily decided to carry out the
iteration procedure in the z direction. A row of
difference equations for the continuity equation
and an adjacent row of difference equations for
the irrotationality equation are solved simultan-
eously for one step of the iteration. This method
will be called the single row method for later
reference purposes because one row of each set
of unknowns is determined per step. The itera-
tion procedure is begun at the boundary z=10
where the flux components w, ; are known for the
whole row of points or equivalently for all j. The
row of continuity difference equations on the
row with the flux components v, ; and the row of
irrotationality difference equations on the row
with the flux components w, ; are solved simul-
tancously. These equations involve the flux com-
ponents w,,;. v, ;, and v, ;. The w, ; are known
from the boundary conditions leaving three rows
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of unknowns and two rows of equations. The
values of v,; are assumed to start the iteration
and the two rows of equations are solved for
vy,; and wy ;.

For the next step of the iteration, the con-
tinuity difference equations on the row with the
v,,; and the irrotationality difference equations on
the row with the w;; are solved simultaneously.
In order to do this operation, the values of w, ;
computed in the first step are used together with
guessed values of the v;;; the equations are
solved for the v, ; and w; ;.

This procedure is continued across the region
until the equations adjacent to the boundary at
z=b are solved. Here the continuity difference
equations on the row with the v, ,; and the
irrotationality difference equations on the row
with the wp ; are solved simultaneously for vg_, ;
and wy ;. For this last step of the iteration the
vg,; are known from a boundary condition and the
Wwg_1,; Were computed in the preceding step of the
iteration.

The boundary conditions on each boundary
are thus introduced once in each sweep across
the region. On the next sweep of the region, the
values obtained in the first sweep are used in
place of the assumed values.

The use of iteration parameter

<
iteration parameters to accelerat
the convergence was tried, but equally fast
convergence was obtained with no parameter.
The equations for one step of the single-row

method without an iteration parameter are

v(_!t1+1)_+_wfﬁ‘l+1) = p ) |, D (]7(1)

i—1.1 i,2 i1 i1
CUAIE W = (Th)
WD oD g 05— a0 (179
VD W <0 o (174)

where M indicates the level of the iterate. These
equations fit the tri-diagonal matrix form so they
can be solved very efficiently with the Thomas
Algorithm.

The model problem was solved using this
single row method with several different sizes of
integration nets. It was determined that the

number of iterations needed for convergence is
approximately proportional to N, where N is the
number of points on the side in the direction of
iteration.

6. MULTIPLE ROW METHODS

The checkerboard finite difference equations
have a very simple form when the iteration para-
meter is omitted. Consequently, a method of
solving two rows of each of the two types of
equations simultaneously was developed. An
advantage of this method over the single row
method is that the values of only one-half as
many rows of v’s need to be assumed in per-
forming an iteration.

The continuity difference equations on the
rows with the v, ; and the v, ; and the irrotation-
ality difference equations on the rows with the
w,; and the wy ; and solved simultaneously. The
wy,; are known from a boundary condition. These
four rows of equations then involve five rows of
unknowns; the v, j, wyj, v, ;, s ;, and v, ;. Values
for the v;; are assumed so that four rows of
unknowns and four rows of equations remain.

The S—1 equations on the row with the w, ;
yield expressions for the v,; in terms of the
wy; and v,; These expressions are used to

from ﬂ'\e equatlnne on the row

.............. .,; from th ons on the row
with the v, ;. The § — 1 equations that result from
this procedure contain at most five unknowns
each. Those equations that involve boundary
conditions at the ends of the rows have fewer
than fiveé unknowns.

The equations on the row with the v, yield
expressions for the wy ; in terms of the v, ; and the
w,;. These expressions are used to eliminate the
w;y,; from the equations on the row with the w, ;.
The resulting §—1 equations contain five un-
knowns at most. Again, those involving boundary
conditions have fewer than five.

The two groups of S —1 equations that have
been formed contain the w, ; and the v, ; as the
unknowns. The total of 2(S — 1) equations when
arranged properly and written in matrix form
have a penta diagonal matrix of coefficients. An
efficient Gaussian reduction algorithm which
takes into account the zero elements in the co-
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efficient matrix was used for the solution of these
equations. After the v,; and w,; have been
determined, the explicit relations for the v, ; and
the w,_; in terms of the v, ; and the w, ; are avail-
able for computing these unknowns. This method
is termed the double row method because two
rows of each set of unknowns are determined
per step.

The next and subsequent steps of the iteration
procedure follow a pattern very similar to that
described for the single row method. A major
difference between the two solution algorithms
is that with the double row method, the values of
only every other row of the v’s need be guessed
as opposed to the values of every row of v's for
the single row method.

The process of solving more than one row of
each type of equation simultaneously can be
extended to more than two rows. Equations were
developed for the simultaneous solution of three
rows and of four rows. In the three row method,
only one-third of the v’s must be assumed to start
the iteration procedure; and in the four row
method, only one-fourth of these values must be
assumed. The band matrix resulting from the
three row method contains seven non-zero
coefficients, and that from the four row method
contains nine.

A pattern developed in the iteration proced-
ures is that each time two more rows of equations
are included in a step of the iteration, the coeffi-
cient band matrix becomes wider by two ele-
ments. The middle two rows of unknowns are
determined from the simultaneous solution of the
2(S—1) equations in the matrix equation. The
other rows of unknowns in the set are computed
from explicit expressions as functions of the

values determined from the matrix equation.
Details of this procedure are given by Gates|[2].

Table 1 contains the values for these coeffi-
cients for the general equations discussed above.
It also contains the coefficients for the eleven
wide band matrix that results from solving five
rows of each type of equation in each step of the
iteration. The band width is always equal to
2M + 1. where M is the number of rows of each
type of equation in the iteration step.

From Table 1, a pattern was developed for
obtaining the coefficients for any band equation
from the preceding row of coefficients. The
coefficients for the three wide band equation are
needed to start the process. Thus, the coefficients
for the five wide band equation can be obtained
from those for the three wide band, and the seven
wide band coefficients can be obtained from
those for the five wide band. The absolute value
for a coefficient is obtained either as the value of
the coefficient immediately above it or as the sum
of the absolute values of that coefficient and the
two coefficients on either side of it. In order to
explain this pattern, it is convenient to define a
nomenclature for the general band matrix.

Sets of simultaneous equations that have a
band matrix of coefficients are of the general
form

aMx;_y+aM Vxi g+t aPx;-,
+a\Px;my + bix;+ Vx H EPx

(18)

(M-D @an _
+ ¢ Xj+a—1 T C XM = d;

where the x;'s are the unknowns, the a;’s, b;, and
¢;'s are the coefficients, the d; is the known right-
hand-side of the equation, j is the position of the
equation in the set of equations and 2M + 1 is the

Table 1. Coefficients for the band equations

Band
Wldt h aj(S) uj(-h aj!:l) “l_(Zi aJt 1 bj ('j‘ i3] (.j('l7 (.j( 3) (.j(-ﬂ (.jh’))
3 -1 41 +1
5 -1 -1 +3 +1 -1
7 +1 =1 =5 43 +5 -1 -1
9 +1 +1 =7 =5 413 +5 -7 -1 +I
1

—1 41 +9 -7

—25

+13 +25 -7 -9 +1 +1
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band width of the coefficient matrix. When M
equals one, the equation is in the tri diagonal
form and when M equals 2, the equation is in the
penta diagonal form.

For the 5, 9, 13, etc. wide band equations, b;
and the g; and c; coefficients with even super-
scripts are obtained by the summing operation.
For the 7, 11, 15, etc. wide band equations, the
a; and c; coefficients with the odd superscripts
are obtained as the sums. The pattern for the
signs of the coefficients is obvious from the table.
The pattern for the coefficients of the equations
that involve boundary conditions on the sides of
the grid and the pattern for obtaining the excita-
tion vector for any multiple row solution method
were also developed. Reference [2] includes the
recurrence formulas for developing the coeffi-
cient matrix and the excitation vector for any
multiple row solution method for the model
problem.

The development led to a method for the solu-
tion of the model problem that includes all of the
rows of equations in the integration net in one
band matrix. The method does not require the
guessing of any of the values of the v’s so it is an
explicit, non-iterative solution. It involves solving
simultaneously a set of 2(S—1) equations that
have a band matrix of coefficients with the band
width equal to 2M + 1, where M is the number of
rows of each type of equation included. The
remaining unknowns are determined from explicit
expressions which give them as functions of the
values computed from the matrix equation.

The authors had available the program of an
efficient solution algorithm for the band matrix
which was developed at the Esso Production
Research Company. Given the band width, the
band coefficients, and the excitation vector, the
solution vector is computed. A computer pro-
gram for performing the various solution methods
for the model problem was written for the IBM
7044 computer.

Table 2 contains the results of solving the
model problem for a square region with § = R =
13 and a = b = 1-0. Each of the solutions was
started with the same initial guesses and was
converged to the same convergence level.

Table 2. Six solutions of the model problem for the same grid

Approximate

no. of total

Band Steps/ arithmetic

S R width Iterations iteration operations
13 13 3 51 12 117,500
13 13 5 29 6 91,900
13 13 7 23 4 88,300
13 13 9 23 3 102,700
13 13 13 23 2 130,300
13 13 25 1 1 9200

The band width values given in the table
represent the width of the bands of the coefficient
matrices for the different methods. The band
width of three means that a single row of each
type of equation was solved per step of an iter-
ation and there were then twelve steps per iter-
ation. The band width of 25 means that twelve
rows of each type of equation was solved in one
step and, therefore. there was no need to iterate
to the solution. The solution was obtained in one
step.

The number of arithmetic operations for the
solution of the simultaneous equations by the
general band algorithm was determined. From
this value and from the number of iterations
required and the number of rows per iteration,
the total number of arithmetic operations for
each solution was determined. These are in-
cluded in Table 2.

The results indicate that the number of iter-
ations to reach a desired level of convergence for
the model problem is decreased by almost one-
half by using the double row method instead of
the single row method. Another significant
decrease in the number of iterations is accomp-
lished by going to the three row method. The four
and six methods give no improvement in the
number of iterations required.

Table 2 also shows that the decrease in the
number of arithmetic operations required for
solution in going from the single row method to
the double row method to the three row method
is not quite so impressive as the decrease in the
number of iterations required. The six row
method actually requires more operations than
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the single row method. The most impressive
figure is that the twelve row method, which for
this problem is an explicit, non-iterative method,
requires less than one-tenth as many operations
as the single row method.

7. EXPLICIT SOLUTION OF THE CHECKER-
BOARD EQUATIONS

Table 3 is a summary of the results of explicit
solutions for the model problem for several
square grids with a = b = 1-0. The conclusion to
be drawn from Table 3 then is that reasonable
solutions can be obtained with up to a 41 wide
band matrix, but the solution of wider band
matrices involves too much round-off error.

Table 3. Summary of explicit solutions of
model problems

Maximum
Band per cent
S R width Ay error
7 7 13 0-15385 0-000
9 9 17 0-11765 0-000
1 21 0-09524 0-001
13 13 25 0-08000 0-005
15 15 29 0-06897 0-052
17 17 33 0-06061 0-129
21 21 41 0-04878 5-038
23 23 45 0-04444 43-936

These results indicate the size of the multiple
row method that can be used practically, and
they do not impose a limit on the size of grid that
can be solved by the checkerboard method. A
grid with 41 points on a side was converged very
well by the single row method, and a grid with 51
points on a side was converged by the five row
method. Other much larger grids were solved
with essentially no round-off error by 1, 2, 3, 4,
and 5 row methods during the course of the
study. Table 3 indicates that the two and three
row methods may be the best when the grid is too
large to obtain an explicit solution.

8. UNEQUAL. SPACE INCREMENTS
Problems sometimes occur in engineering for
which it is desirable to use space increments of
different lengths in the different co-ordinate

directions. An example is found in oil reservoir
studies in which the two co-ordinate directions
represent the length and thickness of a reservoir.
The thickness may be a few feet and the length a
few miles. For this situation, with y representing
length and z representing thickness, one would
probably want to use a Ay much larger than Az.
When problems of this sort are being solved by
the alternating-direction implicit method, a ratio
of Ay to Az of about ten or larger causes con-
vergence problems. This limit is a result of the
need to sweep through the region in the direction
of the long space increments as well as in the
direction of the short space increments.

The iteration procedures developed for the
checkerboard difference equations involve
sweeping through the region in only one direc-
tion, which can be the direction with the shorter
space increments, Az. The single row solution
method for the checkerboard difference equations
with Az less than Ay is written very simply from
Eqs. (5) and (6). The continuity difference
equation is

A
4 pMED — ay WM

A
— V(M+1)_+__y WM+ (
i i, J+1 Az it

i+1,j+1

(19)

The irrotationality difference equation is

(M+1) Ay M+1) (M+1) Ay )
—will o v Wi Dit1.j (20)

Az Az

Solutions of the model problem were obtained
by using these equations with the ratio of Ay to
Az having the values of 0-10, 1-0, 10-0, 100-0,
1000-0, and 10,000-0. Exact convergence was
obtained for all six cases. The solution with the
ratio, Ay/Az. having the largest value required
the fewest number of iterations for convergence
and the solution with the smallest ratio required
the greatest number of iterations. The same
number of points were being determined for all
of the cases. These results emphasize the value
of making the iteration procedure explicit in the
direction with the shorter space increments.

It is possible to develop multiple row solution
methods for problems with unequal space

542




Flux components in potential flow

increments. When two rows of each equation are
solved per step of an iteration, the simultaneous
equations fit the penta diagonal matrix form and a
general row of the coefficient matrix is
-8 —8 +(1+4+28%) +6 —8°

where 8 is the ratio Ay/Az. When three rows of
each equation are solved per step, the simul-
taneous equations fit the hepta diagonal matrix
form and a general row of the coefficient matrix
is
+ 83

—8% —(2+38%) + (1+28?)

+(2+38%) —8% —8%
When § equals 1:0 these coefficients reduce to
those developed in an earlier section for the
situation with equal space increments. The
coefficients for multiple row methods with band
matrices wider than these becomes very compli-
cated. They were not developed because, as it
was mentioned earlier, the two and three row
methods are probably the best solution methods,
other than the explicit solution method, for a
given sized grid.

The checkerboard method then has an impor-
tant advantage over the alternating-direction
implicit method. When the problem to be solved
is such that Ay can be much larger than Az, the
checkerboard method can be used.

9. EXPERIMENTAL VERIFICATION THAT
THE CHECKERBOARD METHOD IS
SECOND-ORDER CORRECT

In an earlier chapter it was demonstrated that
the checkerboard method is second-order correct.
Thus, the truncation error should be directly
proportional to the square of the space incre-
ment. If the space increment size is decreased by
a factor of one-half, then the truncation error
should be decreased by a factor of one-fourth.

The problem used in studying the truncation
error was that for flow near a source of strength u
at the origin[1]. The exact solution for this
problem is given by

J1%4

W= i 2}
__w
V= it (22)

In the solution a value of 0-1 was used for 1. The
flux components were computed in a square
region with the boundaries at y = 0-05, z = 0-05,
y =195, and z = 1-95. The boundary conditions
specified the exact values of the flux components
on the boundaries according to Eq. (13).

Table 4 summarizes the results of solving the
problem for four different grid sizes. The con-
clusion to be drawn is that the checkerboard
method is second-order correct since, for both
comparisons, the ratio of the errors is approxi-
mately equal to the ratio of the square of the
space increments.

Table 4. Experimental verification that the checkerboard
method is second-order correct

Ratio of average

Ratio of fraction error
SXR (Ay)? (Ay)? per value
19% 19 0-01055
41x 41 000220 4-80 4-23
25X 25 0-00601
SIXSI 0-00142 423 3-98

On the basis of Eq. (11), the statement was
made that the centered difference method and the
checkerboard method should have approximately
the same truncation error when the space incre-
ments used for the checkerboard method are V2
times those used for the centered difference
method. The problem of flow near a source at the
origin was solved by the centered difference
method for a square grid with 28 points on a side.
Thus, the space increments were 0-0704. The
converged solution had an average fraction error
per flux component of 0-094.

This solution can be compared to the checker-
board solution for a square grid with nineteen
points on a side. The ratio between the space
increments for the two solutions was then
0-1025/0-0704 = 1-46 where V2 =1-414. The
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checkerboard solution should have been slightly
less accurate than the centered difference solu-
tion according to Eq. (11). The converged values
for the flux components had an average fraction
error of 0-026 for the checkerboard method
compared to 0-094 for the centered difference
solution. Thus, the truncation error for the
centered difference method was about 4-5 times
that for the checkerboard method where it had
been predicted from Eq. (11) that the truncation
errors for the two methods should be about
equal.

The fact that the checkerboard solution was
much more accurate than the centered difference
solution cannot be explained in terms of round-
off error because the general band algorithm,
which is very stable to round-off error, was used
for both solution methods. The explanation must
lie in the fact that Eq. (11) is a comparison be-
tween the truncation error for the derivatives of
the function, whereas the values compared in the
above study are of the function itself. The
checkerboard method gives a much better
representation for the function itself than does
the centered difference method. This finding is
very significant and demonstrates the clear
superiority of the checkerboard method. A much
larger grid, and thus much less computer time
can be used for the checkerboard method. Thus.
there is little need to consider further the cen-
tered difference method for the determination of
flux components in potential flow problems.

10. COMPARISON OF THE CHECKERBOARD
AND ADI METHODS

The model problem was solved for the potential
by the alternating-direction implicit method. For
the ADI method. the set of nine iteration para-
meters which results in the most rapid conver-
gence for a square grid with twenty increments
per side was used.

With twenty increments per side of the grid,
the ADI method required 26 iterations to con-
verge the solution to the fifth decimal place. The
The checkerboard method with the tri diagonal
iteration method required 61 iterations to reach
the same level of convergence.

Each of the 26 iterations for the ADI method
required two sweeps through the grid. Each
sweep required that twenty sets of twenty tri
diagonal equations each be solved. With approxi-
mately eight arithmetic operations per equation,
approximately 166.400 operations were required
for this optimum ADI solution.

Each iteration by the checkerboard method
required the solution of twenty sets of forty tri
diagonal equations each. Approximately 390,400
operations were required for the solution, or over
twice as many as for the ADI solution.

Table 3 is a summary of the results of solving
the model problem for a grid with thirteen points
on a side by six different multiple row methods
and the approximate number of arithmetic
operations required for each solution. The same
size grid was solved for the potential by the ADI
method with the same set of iteration parameters
used previously. This solution required eight
iterations to converge the problem to the same
level of convergence as those solutions sum-
marized in Table 3. The ADI solution required
approximately 18,300 arithmetic opcrations
which is considerably fewer than all of the mul-
tiple row solutions, except the explicit solution.
That required about 9200 operations or one-half
as many as the ADI solution.

The conclusion then is that the ADI method
can converge to a solution for the potential with
less work than the checkerboard method can
converge the equivalent problem for the flux
components. However, if an explicit solution can
be used for the checkerboard difference equa-
tions. then that is the fastest method.

The checkerboard method also has an advan-
tage over the ADI method for problems with
grids with unequal space increments as was
discussed in an earlier section.

11. MIXED BOUNDARY CONDITION
The example problem for illustrating the treat-
ment of a mixed boundary condition is one with
an analytical solution given by Carslaw and
Jaeger[3]. The problem is the steady-state
temperature in a rectangle with convection into a
medium at zero temperature on one boundary.
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When the problem is converted from one in
temperature, or potential, to one in fluxes the
boundary conditions are

r(0,y) =—1 (23a)

w(b,y) =0 (23b)

5(2,0) =0 (23¢)
% (2 a)+hw(z.a) =0 (23d)
a9z

where h is the heat transfer coefficient.

The grid is arranged with unequal space in-
crements for the two co-ordinate directions so
that v flux components are to be determined on
the boundary at y = a. Fictitious points are used
for the w flux components in order to write the
irrotationality difference equations and finite
difference analogs for Eq. (23d) on that boundary.

Figure 3 represents a portion of the boundary
at y=a. The dotted squares represent the
fictitious points. The irrotationality difference

P visz,s
{F)
Wit ,s-1[1] T2 Wias
d Vi+l,s
]
i -
w osa [ X o0 wis
z [} v

Fig. 3. Boundary with mixed boundary condition.

equation written about the point, p, on Fig. 3 is

M+1) U(M) W(F) —_ “,(J'H—])

o
Li+1,sAZ S Ti.S Ay LS—-1 0 (24)

where F indicates a fictitious value, and M
represents the level of the iterate. The difference
analog for Eq. (23d) is

R o
Az 2

The value wif) is eliminated between Eqgs. (24)
and (25) to obtain as the last equation in the tri
diagonal set for that step of an iteration.

<2£>W<M+n+ (l +i D = (l +i v}
AZ isS—1 hAy i+1,8 hAy i -
(26)

The checkerboard solution was obtained for a
grid with 25 points on a side in about 100 itera-
tions. The average percent difference between
the values computed from the series and the
checkerboard numerical solution was 2-2 percent.

This is a good comparison between the
checkerboard numerical solution and the series
solution obtained by the classical separation-or-
variables technique. The problem iliustrates that
the method can be easily adapted to problems
with mixed boundary conditions.

12. CURVED BOUNDARY AND POINT
SOURCE

The boundaries of many problems that occurin
engineering are curved. Figure 4 represents
one-fourth of an elliptical oil reservoir in which
it is desired to find the flow patterns. Fluid is
injected in equal quantities at wells in two
quadrants of the ellipse and produced in equal
quantities from symmetrically placed wells in the
other two quadrants. The wells can be considered
to be point sources and sinks so that the problem
also introduces the problem of handling such
points. This problem is one which Douglas and
Peaceman[4] solved for the pressure distribution,
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Fig. 4. Integration net for elliptical reservoir.

i.e. potential, by using the alternating-direction
implicit method.

The wells are located so that the solution is
symmetric with respect to z and anti-symmetric
with respect to y; thus, it is necessary to consider
only the upper right hand quandrant. The bound-
ary conditions specify that the w flux compon-
ents are zero along both the v and z axes and that
there is no flow across the curved boundary.

The no-flow boundary condition on the curved
boundary is treated by approximating the curved
boundary with a stepped boundary as shown by
the broken line on Fig. 4. The points outside the
boundary are fictitious but the flux components
located there are needed to write the checker-
board difference equations at the usual interior
points. The approximate boundary is such that it
is vertical when it passes between an interior ¢
flux component and a fictitious v component.
There is no flow across the boundary so the v
component is zero at the vertical boundary.
Likewise, the approximate boundary is hori-
zontal when it passes between an interior and an
exterior w flux component. The w component is
zero on the horizontal boundary. The interior
component, the zero component on the approxi-
mate boundary, and the fictitious component all
lie on the same straight line so that the exterior
component can be expressed as a function of the
zero component on the boundary and the interior
component by the point-slope formula.

The finite difference equations are written as
Eqgs. (19) and (20) so that the space increments in
the two co-ordinate directions can be adjusted to
cause the point source to fall on a point at which
the continuity equation would normally be
written. The iteration procedure used is the single
row method with the tri diagonal sets of equations.
Each succeeding step of the iteration procedure
has fewer equations to be solved than the pre-
vious step.

The solution satisfies Eq. (3) everywhere in the
interior of the region, except the point where the
fluid is injected. This is because the equation
expresses the condition that the net flow into the
region around a point is zero. To obtain the
correct expression at the point source, one writes
a material balance around the source point which
is indicated on Fig. 4. The fluid is injected at the
rate V. The flow, V,. across the line d-e is
approximately

V,=—Az oM,

(27a)
The flow, V,. across the line e-f is approximately

[ (M)
V2 = A_v “'2 5

(27b)
The flow, V,, across the line f-g is approximately

— J(M+1)
V;; = Az Uys -

27¢)
The flow, V,, across the line g-d is approximately

Vy= Ay wi+n, 27d)
Then at steady state V=V, +V,+V;+V, and
the equation to be satisfied is

V= [Az(v%“’ — v.‘z’fﬁ*“) + Ay(wf{‘_é*” — u'%’)].
(28)

This equation fits into the tri diagonal set for that
step of the iteration.

The problem was programmed for the grid in
Fig. 4. The values of the parameters used were:
a= 10, b=0-643, Ay = 0-147, Az = 0-155, and
V =2-0. The point source was located at the

546




Flux components in potential flow

point (z,y) = (0-232, 0-589). The solution was
converged to the fourth decimal place after
twenty iterations.

To obtain a check on the solution, the flux
components were numerically integrated to
obtain the potential which was compared to the
solution obtained by Douglas and Peaceman [4].
Equation (13a) was used for the numerical inte-
gration with k = 1-0. The integration was started
at the y = 0 boundary where the boundary con-
dition is 7 = 0. The values obtained are shown
on Fig. 4 at the points indicated by the +’s. The
values cannot be compared exactly to those ob-
tained in [4] because the dimensions of the region
used for that solution are not known, but the

potential profiles are generally the same. The
method for treating the curved boundary and the
point source is satisfactory.

13. CONCLUSION

A numerical method has been described which
can lead to a direct solution of some two-dimen-
sional potential flow problems expressed in terms
of flux components. This method can be used
with one space increment as much as 10,000
times the other, and thus, it has advantages over
other methods for the solution of such problems.
The method has been demonstrated to be appli-
cable to a variety of boundary conditions and
flow configurations.
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Résumé — Une méthode, bien supérieure & une méthode décrite précédemment, a été développée
pour donner une solution numérique des composants de flux. Dans certains cas, cette méthode
conduit a une solution directe, non itérative de problémes & deux dimensions. Elle présente aussi
I'avantage sur la méthode implicite de direction alternée, de permettre d’utiliser des accroissements
plus importants dans un sens que dans I'autre. Des exemples sont donnés pour montrer I’application
de la méthode aux limites mixtes, courbes et a une source ponctuelle.

Zusammenfassung— Es wurde eine numerische Losung fiir Stromungskomponenten entwickelt,
die einer friiher beschriebenen Methode weit iiberlegen ist. In manchen Fillen fiihrt diese Methode
zu einer unmittelbaren, nicht iterativen Losung zweidimensionaler Probleme. Sie hat ferner den
Vorteil gegeniiber der impliziten Methode, mit wechselnden Richtungen dass viel grossere raumliche
Zunahmen in einer Richtung verwendet werden konnen als in der anderen. Es werden Beispiele
iiber die Anwendung der Methode auf gemischte Grenzbedingungen, gekriimmte Grenzen und eine

Puhktquelle gegeben.
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°

" Chapter 3. The Equations to be Solved

The specific problem which will be used to demonstrate

the solution of an elliptic problem is the poténtial flow of
an irrotational, inviscid fluid. At steady state, it is

represented in two dimensions as

2 2 : - .
0% , d°¢ '
sz ayz XX vy . .

where ¢ is the potential function, representing temperature
in heat conduction, pressure in flow through porous media,

and concentration in particle diffusion. In these cases,

Vxdé = - Kw o : B (3.2) =

where K is the dissipation constant, and w is the fiux or
gradient term represented by the heat flux, the wvelocity,
and the mass transfer rate. The parabolic eguations can b

expressed as

2 N\ a
. Vw = V¢ = —Kr g% ' - (5-3)

where t isotime, 72 = B/B;? + B/ayz, and K, represents the
capacitance.

In a two-diménsioﬁalvpotential flow problem, the hori-
zontal and vertical flux compbnénts can be defined from

equation (3.2) as

\

u = - K %% and v = - K 5y (3.4)

By differentiating egquations (3.4), one obtains

L | S 1 o ]
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du 7% ov ¢
- K ey x = Kagex (3.5)

‘Since the two second differentials are equal,

2 2 ! .
7o oK) . S
WX y = B"B——y X . (‘306)
Then, ..
PoPF-0. - (3.7)

This equation (3.7) is known as the irrotationality equation.

In addition to the irrotationality equation, another equation

is needed to relate u and v in terms of x and y. Equation

' (3.3) is the desired equation. When the term Vw is expanded,

this takes the form

du , Jov 0%
Sx T3y © ~ 3t | (3.8)

This unsteady-state potential flow problem as repre-

sented by the equations (3.4), (3.7), and (3.8) is one which

- will be used in the development of new methods for numerical

solution.

Boundary conditions may be.specified in various ways.
The major consideration is that with an elliptic problem,
either the potenfial or a derivative of the'potential must
be specified along the en%ire boundary. For example, the
boundary conditions may be specified as in Figure 3.1.  The

specification shown in Figure 3.1 will be used.
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‘Chapter 4. The Finite Difference Equations

Development of Finite Difference Equations

T T G L& L] T T T e e

The development of the format for solving the trans-
fent elliptic finite difference equation arises from an |
article by Qon Rosenberges whereby the elliptic equation was
split through the flux definitions; equatiqﬁs (3.4), into
two first-order equations as indicéted by equations (3.7)
and (3.10). These.equationé.were then solved by second-order
correét centered difference analogs. Gates9 later solved
equations of the same type by a checkerboard technique which
he applied to various steady-state elliptic problems.

The unsteady-state potential problem can be solved

‘similarly. In this method the finite difference analogs of

three equations, the contihuity equation, the irrotationality
equation, and a flux definition, are combined in varying
arrangements. |

» Consider the elemental arrangement of values displayed
on the 1at£ice shown in Figure 4.1, where i and j'indei each
double row of values in the z and y directions, respectively.
The v's are determined at’grid points‘indicated by O, the
w's at points indicated by [J, and the potehtial, T, at
points indicated by A. This'particular arrangement is used

to incorporate the'bdundary conditions as defined in the

~model problem.

- o
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Figure 4.1. Lattice of C, T, and I.

The finite difference equations are written to tie this
block of values together. For instance, if the element
shown comprises the total region, then boundary conditions
dictate the values of v along column j-1 and row i-1, w |
along column j+2 and fow i, and T along row i1-1 and column
j+2. Then iny the nine values--three groups of the three
points in the interior region--are unknown. Therefore nine
equations are required to determine the values of the flux

components and the potential at each of these points. The

finite difference analogs for the continuity equation, (3.11),

are written around the points labeled C, C', and C"; those
for the irrotatioﬁality‘equation, (3.7), around the points
labeled I, I', and I"; and those for equation (3.4), around
the points 1abeléd T, T', and T". At C, the finite differ-

ence analog for the equation of continuity is

L

.
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(Ew)[ﬁ ViaJ'—Vi:J'-l) * E(Wi,.j~1‘wi-1,3—1)]m+1

o) L(w PO
v a)[Ay 4,570,510 A, ga Wi-l',j-l)]m
{r, ., . -7, . . e .
At( 1,3-1, 1,3—1m+l) _ (4 1)

where a is equal to 1/2, 0, or -1/2 for the‘backward,
centered difference, or forward anélog, respectively, anQ
m is the time indei.

At time m+l, the potential equation w = -3T/dz at point
T is

- A ]_-( :
w = - =T, . ,-T. . 4.2
%'1’3"1m+1 Az\71i,j-1 1—1,3—1)m+l ( )

and the irrotationality equation at point I is

1 1

—\v. .-V, . - —(w, W, . = 0.
AZ( i,Jd 1—1,.J)m+1 _Ay( i-1,J 1—'1,J-1)m+1

(4.3)

Truncation Error. In the development of these analogs

to continuity, irrotationality, and flux equations, it is
important to examine the truncation error in terms of space
aﬁd time increments. In Appendix B, éhe truncation errors
for the checkerbﬁard arrahgement of eqﬁations are computed.
The truncation‘efrors in each~of the three equations are

found to be as foilows:‘
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In the continuity equation,

3 Zn+l 2n [~\2n+l. on
- 1 0 ‘AN A NN - (é&) ]
E. = AE& (2n+1)![(ay2n+1>c<2 ) '(5;?ﬂii>c = (B.11)

x

In the irrotationélity equation,

o0 2n+l 2n 2n+l 2n

o 1 e} v\ [Az " w Ay

Ey = - 2 {zne)T [( 2n+l) (_‘2 ) —<__2_-'n+l> (‘2‘) }(3'12)
n=1 oz I dy - I

And, in the w flux equation, ~

: % N 32nHlL\ [ .o2n | .
Bp = n§1 (2n+l)1[(az2n+l.>T (—2‘) ] (8.18)

Fach of these efrors revgalé thé féct”thaf,thg c@eckerboard-

analogs are second-order correct.

Method of Sweeping Across the Grid. Letting B = i/Ay,

v = 1/At, 6 = 1/Az, ¢ = B(3+a), n = B(3-a), 6 = 65(1+x), and

5(41-a), and rewriting, one obtains for equation (4.1):
dlv, .-v. . - + Blw. . - -W. . .-.\

¥ “(Vi,J‘Vi,j-l)m # 2, g, ),

Y Y ' ' 4.4

fdr.equation (4.2):

CW. DL
l"l"J"]‘m m+l

+1

and for equation (4.3):
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6(V; -V . - (v. W : ) = 0. 4.6
Ci,J 1—1,J)m+1 a 1-1,377i-1,3-1 n+l ( )

These three equations comprise the set which is re-
peated for three increments in J in Figure 4.1. In the gen-

eral case there will be many horizontal groupings by line

from boundary to boundary vertically, and there will be many

more than three increments in j. At the boundary where z =0 .

the flux components v, . are known for the entire row of

1,J

points as are the potentials Tl i The values of W, s are
. >

_ 5d
not known unless the boundary z = 1 coincides with i1 = 2.

However, if wvalues for Wo s are assumed, values of Vo

»J°
can be computed by the simultaneous solution

3

wl,j’ and T2,j

of equations (4.4), (4.5), and (4.8) for all values of j.

The values of v ., and T

W
2,1’ "1,s 2,s
ary conditions in the y direction. .

are kxnown from the bound-

For networks larger than two rows, the pattern is simi-
" lar. Figure 4.2 shows a grid for a four-row format. In this

case, for z = 1 along the row coinciding with w, ., the LV
; 5 J

T5d

are defined by boundary conditions, and the initial assump-

tions are the values of W2,jf The Tz,j’ Vz,j’ and wl,j are
determined as described above. Then values for Wz j are

. R ) . 2
assumed and Ts,j’ VS,j’ and wé’j are computed from equations

(4.4), (4.5), and (4.6). The values obtained for T, P
. 3

and Vo j are used‘in these equations. Next, with new values
3
of T3

and V3 . are known values for Wy 3? the values of
3>

sJ

T4,j’ V4,j’ and w3,' are determined from the same equations.

3

For grids of more than four rows, the values of‘w:.L 3 are
B4

L | ' -
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Figure 4.2. Sweep Format Grid

assumed for the calculations of each row until the boundary
z =1 is reachéd. Henceforth this marching procedure is
called "sweepiné."

After the first sweép the values of T, w, and v 'in the
‘interior are not correct since they are based on assumed
values for the wi,j'
process is required. This process of repeating the sweep is

Thus a repeat of the entire sweeping
"iterating." Tterations are continued until succes-
sive values of T, w, and v agree within a given tolerance.
However, rélatively few iterations are required since the
values for wi,j at the pré&iqus time step can be used as the
first assumpfion; Thése values are quite near the correct
values.

After the values have converged so that all the values
are_determined at.the same time level, the entire process is
repeated to obtain values of the dependent variables at an

even later time. This procedure is continued until a steady-

staﬁe is reached or until the solution is obtained for the

L | S
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desired amount of time.

Solution of Two Rows of Equations Simultaneously

In order to solve equations (4.4), (4.5), and (4.86)
simultaneously it is convenient to arrange the terms in a
precise way. For the moment, consider that Figure 4.3 is

"an element of a grid extending in the z direction as in

2 & & 3

2 O—Dh—O—Ah—O—5 9
1 B & &

1 60—A S5 A b—A b
1 2 3

1 2 3 4

Figure 4.3. Double—wa Grid

Figure 4.1. Then the three values W, ., Wz;z, and w, 5 are
asqmned, the other boundary values are known, and the nine
values in the interior are to be obtained from simultaneous
solﬁtion.of the equations. The three equations may be re-
written with the unknown values on the left-hand side and'the
known or assumed values on the right-ﬁand,Side. For j =2, -

the continuity equaﬁion becomes

YTp o = 8Wy T OV o = V5 - Wy - M0

+ vy g - bWy gt Quy g+ Qwy y + 9T 4

-= DPZ,]. - e‘ﬁz,l : (4'7)
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where DPi 1'represents the values known from the prévious
R -3

time step plus Viq which are known from the boundary condi-
3

" tions. Thus,

DPyy = MVy,0 = MWy,p - &Wy g + 0wy 4 + 0V, 4o
(4.8)
The flux equation at j = 2 becomes.
6T2’1 + Wy = §T1,l (4.9)
and the irrotationality equation becomes
Buy o + 0V, 5 - Bwy 5 = Bvy , (4.10)
For j.= 3, the continuity equation contains two unknown
values of Vi,j and 1is

'YT2’2 - Gwl > + d>v2’3 - <!>v2,2 = —ewz,z - o z

J

Ty o - Qwy o+ LWy 5+ YT, 5 = DRy 5 - BV, 5

(4.11)
In “this instance DPi j does not contain a boundary value and
, :
is
PPy g = MWi,g = Wigm = Oy, + Gy J741

o (4.12)

The flux equation is
6T2’2 Wy o = BTy s ;(4.13)

and the irrotationality equation is
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The equations at the y = 1 boundary are written for j = 4

in this simplified case. The continuity equation thus is

'YTZ,S - ewl’s + ¢V2’4- ¢V2’3 = DP2’3 - GWZ’S’ (4:015)

the flux equation is

BTy 5 + Wy 3 = BTl,s, : : , (4.18)

and the irrotationality equation is

Bwy 5+ By, 4 = Buy 4+ Bv) 4 = (4.17)

°

There is only one unknown value of Wilq in equation

»3-1
(4.17) since the other is given by the boundary condition ghd
is on the right-hand side of the equation.

JIn actual problems there will be many more than three
and one-half increments in'the y direction. In this case,
however, the same nine equations are used. They =0
boundary equations will be the same as (4.7), (4.9), and
(4.10), and the equations at the y = 1 boundary wi11 be
(4.15), (4.16), and (4.17) with j much greater than four.
There will be a large number of sets of the interior equa-
tions like (4.11), (4.13), and (4.14). By a judicious
arrangeménts of T, w, and v in the 1eft—hand sides of the
equations, a diagonal patfern can be obtained in the coeffi-
cient matrix. These equations can be written in matrix form
as in Figure 4.4, where dl thfough dg are the right-haﬁd

sides of the equations. The equations enclosed by a dashed

line are the general set of equations for the interior points.

L | ' -
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From equation (4.18), it is noticed that the non-
zero terms of the coéfficient matrix are in a narrow
diagonal pattern with the coefficients y, 1, and & of the
T, w, and v - as the main diagonal. The width of the "band"
is five terms;

The equations in this form can be solved simultaneously
by using some pentadiagonal,algofithm22 or by a general
Peaceman band algorithm.z4 With the Peaceman band algorithm,
data to be supplied include the bandwidth, the coefficient
vector, and the excitation vector} This algorifhm requires
approximately N arifhmetié operations where

. k - |
N=7k +1+4 ) (n-1). . (4.19)
n=1

These operations are almost e@ually divided between addition

and multiplication.

Solution of Three Rows okaQuations Simultaneously

Let the foregoing procedure be termed the double-row

method since the Wo j are assumed and the continuity and

2

-irrotationality equations on two rows are solved simultan-

eously. It is possible to solve equations from three and
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four rows of points in a single solution. The continuity,
irrotationality, and flux equations mayfbe combined in a
variety of ways.

In solving three rows of points simultaneously, the .
continuity, irrotationality, and flux equations are combined
in a certain way. Figure 4.5 shows the points to be con-

sidered in the general case; the boundaries are considered

5 0 - & 8
S ¢ A\ 5} /i ® A o éﬁ
4 43 &8 0 H
4 OG- - & £ & £ O A\
t 3 fDr 0 tes! =)
Z
3 0 A 1L o Al o8 A2 48R A
” [Ry \\7y F Ak \r g [SAY \( —
2 m [ma) 3 M 3R r]
|8y |W¥) (W9 ) -
2 ¢ \ 4L, D A4 D P\ Py A\
L/ [y \y/ [any \ Vg LIy 3/ =
A S A 6 R
1 &5 & £ =)
1 6 A - A S N S A\
1 2 3 4
1 2 : 3 - 4

y'—)

Figure 4.5. Triple-Row Grid

1ate?. Tbe purpose is to tie the Ws,j to the Tl,j and Vl,j
in such a way as to require the least amount of computer time
to sweep the entire grid solving only for values needed in

the sweep and after convergence at a given time level to fill

L | S
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in tﬁelcomplete lattice with values of T, w, aﬁd \'s from'
the three equations.

One such method for accomplishing this géal is.to write
the éontinuit& equation around poin% 1 in Figure 4.5, the
irrotationality equation around pbint 7, and the flux equa-.

“tion around point 6. 1In this élemental grid, it can be seen
that the three equations may be written oniy in terms of
TS,j’ VS,j’ and Wl,j so that if the Ws,j be assumed, alohg

with the boundary conditions stated along T and v the

1,J 1,3’

values of Ts,j’ Vs,j’ and wl,j'can be determined. The sweep
up the grid can be effected by assuming Wo j and, using the
3

just-determined values of T3 j and Vg 3° obtain the values of
2 2

TS,j’ Vs’j, and W 3’ thereby gpdating w In this manner

3,3°
the top boundary which is known by boundary conditions can

3

be reached and the procedure begun again until a satisfac-
tory convergence is obtained.

.In Appendix C, a system of general equations along with
boundary equations are developed. The triple-row, three-
variable general equations developed in Appendix C are as

follows:

B V1,1 T ®Vz.2 T 1Tz 0 5 1,2 T %33

Bo e _ -
T %5 W ,5 = PPgp ~ YTy o + DPp 5 - Oug ,

T ovy 5 - vy 3 _ (c.10)



- s By o Pry,e * (ﬁf’z‘gi)"s,s - & 3,3
- 5W1,3 - %’l Vs, 4 = —g—(DP§’2—DP3,3) - BW3:2
+.Bw3’3 + 6?1’3 | (0;18)
B’f3,2 t vy 5+ BT 5 -0 - | (c.19)

Although more‘computations may be involved in each simulﬁan-
eous solution of fhese equations than of the two-Irow equa-
tions, values are assumed so that fewer itefations may be
required.

Another reduction in computer time may possibly be
_real%zed by incorporating the flux equation into the contin-
uity and irrotationaliﬁy equations, thefeby eliminating the
and leaving equations in terms only of Ti and w,

5d i,3°
This reduces by one-third the number of equations, although

LV, .
- 1sd

there is an increase in the complication of the remaining
equations. The equations are developed in Appendix C;gthey
are-presented in Figure C.2. The terms enclosed by a dashed
line are the general set, but it musf be noted that in equa-
tion (C.30), the'T3,4 term in the general form would be un- .’
known and placed on fhe left but in this presentation, since
S = 4 or the maximum j is four terms, it is known. The
system of resulting equations is only seven terms wide and

- the diagonal band is practically full; both of these‘prop—
erties lend this method to a rapid solution compared with

previous methods.
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~in terms of T4,j’ V4,j’ a?d Wy
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©

Solution of Four Rows of Equations Simultaneously

A quadruple-row method, a logical extension of the
triple-row method, is developed in %ppendix D; Beginning
with the equations used in the triple—row'method, the cgn-
~tinuity, irrotationality, and flux equations are developéd
incorporating four rows simultaneously. Figure 4.6 aids in

under%?anding the procedure.
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Figure 4.6. Quadruple-Row Grid

The overall plan in this method is generally the same
as in the triple-row method. The four rows are tied to-
gether by equations in such a manner as to be expressed only.
In this way, the values

2

and v, . the_'

w4’j may be assumed and with values Tl,j 1,3

L ’ ]
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equations selved for T4 3 Vg 5’ and w Using the T4 3
. 3 3 s

1,3°

and V4,j and the assumed values of N7’ s the T7 i’ V1,5 and

Wy i may be solved and so on up the grid. After repeating
’d .

v

this process with the updated Wy j,lw ‘etc., convergence
J

7,3’
occurs and the points over the entire lattice may be filled

f _ a a | L J T T e—

~in by equations used to eliminate them before. The com-
plexity of the equations increases markedly, but the ele-
mental pattern is described.
‘Equations (D.1) through (D.15) can be arranged in
diagonal band form similar to that of the triple-row mefhod.

The band is 15 terms wide when the equations are listed in

the order continuit&, followed by irrotationality, followed
by flux: C I T. But as was seen in the triple-row ﬁethod,
when.the Vi,j were expressed in terms of T 1,3 eliminating

one-third of the equations, the time required for solution

was reduced. The resulting general equations are presented

‘below.
Continuity:
2.2 2
B (45 % L 3Bo 25¢y)
- W - BoT +. + (25¢ + "Y)T
To52 1,1 4,2 052 5 552 /1,2 4,3
| o, |
680 , 68%0° | 4Boy , o By,
“( 5 5 PO+ F )y 3 -PoT, 4
95 06 v 65
T : 380 , 4p%4° 25¢y) B % .
! +( + + W DP + DP
5 052 057 1,47 5.2 "1,5 4,3 3,3
+(26% 414+ Y ) pp (DP +DP, ,)- Bo? T
96 ) 2,5 " 66 ,2 P 2,40 Tes T

‘ Y 68%2 &@1 ‘ QE
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2.2 ' 2.2
: 4876~ - 2By B~
+~( o5 — T 2B + “"‘ea“)Tl,zL - o5 Ti,5 " Wy 3
' ‘ (D.20)
Irrotationality:

3 2 2 o, 32
B¢ _ (5B % ZB ¢y SB ¢ 98%¢ , 10B ¢
Bz, 4 ( + )T4,2+< +

6%5 0% 6% - f ° 6%
2 ~2 2.2
6820 38 ay__) (95 o, 10B“®
+ = BB+ e 2T L+ Bw, - +
025 0 25/ 4,57 F"1,37\" 6 025 .
6
82¢V_F554_3874_Bx ) fa- B,
0°5 6°5/ 4 s &
sZe? | 28%0y , 3p° ¢>T %%
oZs 6% 6 ) 4,57 g2y 4,6

_ Biop. __op. 2B, 3p%6 , BY | |
- 9(13133,3 -DP ) + ( 5 926+626)(DP4’3—DP4’4)

6¢ 8% 36%0 . By :
t oy (DP, g-DPy o)+ 55 Wy o~ (25+ o5 +§‘S)W4,3

2 .
3820 BY), B0
(23"’ o5 To5/) 4,4 o5 Ya,5 + PO(Ty 3-Ty 4) (D.21)

When arranged in diagonal form the two-variable quadruple—
row equations present a band of eleven or thirteen terms,
depending on the ‘order of writing.

Methods of Eombiningimore than four réws are, from
Appendix E, extremely unwieldly. The amount of work in-
volved in setting'up'the coefficient and excitation vectors
for é program used to solve any method incorporating more

than four rows is prohibitive.

L | | ]



Chapter 5. Test Problem No. 1

In order to determine the number of iterétions
required for convergence for the double-, triple-, and quad-
ruple-row methods, tesﬁs were conducted on two simple prqb—
.lems. The problem investigated first is that of steady-

‘state potential,'T, defined as

T = %[yz - (z—1)2]-" (5.1)

where y and z are the horizontal and vertical coordinates,
respectively, normalized from zero to unity in both direc-
tions.

The flﬁx définitionsdat steédy—étafé defiﬁed.iﬁ fhé_two |
equations (3.4) are |

vV = - g§-= -y ' W= - g% =z - 1. (5,2)

‘The steady-state potential flow situation is shown in Figure
5.1. Solid lines represent the potential flow; and dashed

lines, the 1iﬁes of equal potential. This steady-state con-
dition is approached from initial Qonditiéns of T=w=v=20

at every point except at the boundaries at which these are

defined as follows:

w(y,1) = o

T(on) - - %(lLyz), v(y,0) = -y : (5.5
v(0,z) = 0O .
7(1,2) = 3(22-2%), w(1,2) = z - 1

[__ _- N L .52 : e __J



Figure 5.1. Steady-State Potential Flow.

An IBM 7044 computer is used to solve the test problem :
with grid sizes‘(R X 8) of 10 X 10 for the double- and quad-
ruple-row methods and li X 10 for the triple-row method.
(The 'z direction must have 2 + i, 3 + 2i, and 4 + 31 sub-
scripts for the double-, triple-, and quadruple-row methods,
respectively.) In Appendix F, computer programs for each of
»the three methods are presented. Solutiens were obtained

| using from one to ten iterations per time step. . After each
time step the time increment was increased by 10%.

From the initial conaitioﬁs, it was found that seventeen
time stepswere required to reach steady state. (The values .
of T, w, and v for steady-state solution for the grids 10 X
lo‘and 11 X 10 are presented in Appendix F in Tables F.1 and
F.2.) To determine the minimum number of iterations required
per time step;_the values of the potential at successive time
steps for each run were examined. In each Instance it is

seen that the maximum error produced in the calculations was

L | 2
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found at the y = 0 boundary; or at the subscripts (i,1);
therefore values of potential at (i,1) were used to compare
relative accuracies of computation; In Table 5.1, the values
of T2,1’ T3,1’ and T4,l are presentéd for the double-,
triple-, and quadruple-row methods, respectively, for two
to six iterations per time step'at the end of time intervals
15 to 23. |

From these results it ,is seen readily that for four-
decimal accuracy, the number of iterations required per time
step is five for the double-row method, and only two for both
the triple- and quadruple-row methods. In Appendix F,.Tables
F.3 through F.5 conﬁain results of the potentials determined
throughout the lattices at the seventeenth time step for
two to six iterations per time-step for the three methods.

Of vital interest in selecting the most efficient method
is the time required for computer solution of the problem;
In Appendix G is presented a method for determining the num-
ber of cycles required to perform the calculations, i.e.,
addition, subtraction, multiplication, and division, for a
given grid size and a given number of iterations per time
for the various methods discussed. Table 5.2 shows the re-
sults of these calculations for the number of cycles required
for solving two equations (continuity and irrotationality)
for two unknowns (T and w), the v having been eliminated in

terms of other T and w values by the flux equation. The
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‘Table 5.1. Potential at Iteration and at Time.

" Time 2 -3 h 5. 6
Step TIterations Iterations Iterations Iterations Iterations

7 (S.S. = 0.39889)

2,1
15 -.39885 -.39886 -.39887 -.39888 -.39888

.16 -.39882 -.39884 -.39889 -.39889 -.39889
17 -.39895 -.39888 -.39890 -.39890 -.39889
18 -.39874 -.39886 -.39889 -.39889 -.39889
19 -.39906 -.39889 -.39889 -.39890 -.39889
20 -.39866 -.39888 -.39890 -.39889 -.39889
21 -.39915 -.39889 -.39889 -.39889 -.39889
22 -.39860 -.39889 -.39890 -.39889 -.39889
23 -.39919 ~.39888 ~-.39889 -.39889 -.39889

T31 (S.S. = 0.32628)

15 -.32568 -.32617 -.32610 -.32611 -.32611
16 -.32583 -.32627 ~.32621 -.32621 -.32621
17 ~-.32593 -.32631 -.32624 -.32625 -.32625..
18 -.32601 -.32631 ~-.32626 -.32630 -.32627
19 -.32607 -.32631 -.32627 -.32681 -.32627
20 -.32612 -.32630 -.32627 -.32723 ~-.32627
21 -.32617 -.32631 ~-.32627 -.32736 -.32627
22 -.32620 -.32628 -.32628 -.32757 -.32628
23 ~.32623 -.32630 -.32628 -.32764 -.32628

Tyq (S.S. = 0.23269)
15 -.23212 -.23281 -.23261 -.23266 ~-.23265
16 -.23226 -.23279 -.23264 -.23269 -.23267
17 ~-.23235 -.23279 -.23266 -.23269 ~-.23268
18 ~.23244 -.23276 -.23267 -.23269 -.23268
19 ~.23251 -.23274 -.23267 -.23269 -.23269
20 -.23256 -.23272 -.23267 ~-.23269 -.23269
21 -.23260 -.23271 -.23268 -.23269 -.23269
22 ~.23263 -.23271 -.23268 -.23269 -.23269
23 -.23266 -.23269 -.23268 -.23269 -.23269




s

I~ : | g |

triple-row method effectively reduces the cyclés required

by the double-row method by 66% and the quadruple-row method

Table 5.2. Number of Cycles Required.

Method - Grid Size Number of Cycles
Double-row 10 X 10 211,800
Triple-row 11 x 10 72,900

. Quadruple-row 10 X 10 95,300

reduces it by 57%. Therefore, the triple-row method, with

only-two iterations per time step is the optimum procedure.

B | ]



Chapter 7. Test Problem No. 2

The model problem developed in Chapter 5 is purely an
ideal representation of an unsteady-state elliptic problem.
More realistic 1s a problem developed to possess cervain

characteristics present in a particular oil flow through a

porous anisotropic medium, an oil reservoir. Such an exXample

is the following problem.

Let Figure 7.1 represent a two-dimensional cross section .

of a reservoir in the earth where the

N]

axis is vertical. and
the y axis horizontal. T represents the value of the'potenf

" tial which may in this case be pressure or a linear function

y=0 y=20

y-—)

Figure 7.1. 0il Reservoir Dimensions

thereof. Thé Z éxtends from 0 to unity vertically repre-
senting a normalized length ahd y extends from_o to 20 rep-
reéenting a resefvoir which may possibly be twenty times
longer than high in cross section from the outer boundary to

the producing'oil well. Assuming that immediately above

L e | - N
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the oil reservoir (porous medium) there is a salt dome or a
gas cap across which no oil flows Vertiéally,vthé w at the

(top boundary may be équal to zero. This satisfies the
boundary condition along the z = 1 Eoundary, convenient to
the nomenclature used in the modei problem. It is also
~desirab1e from a realistic pbiht of view for w to be a maxi-

mum at z = 0, y = 0, and to approach zero at the well, y =

20. This condition is easily described by the equation
w(z,y) = (1-z) (20-y)/20. (7.1)

For the pfoblem to be defined properly, i.e., with

~_enough boundarynconditions,,T,or a derivative thereof must
be defined at two boundaries of z and of y. Defining w in
equation (7.1) is tantamount to defining T at the two bound-
aries of z, and since T is defined at the boundary y = 1,
either the derivative, v, or the potential itself, T, must
be defined at one point along y = 0. (Defining w along y =

| 0 fixes the T elsewhere along y = 0.) Therefore, assumé T =
baty =0, z = 1. The problem is now defined in accordance
with a few characteristics of an oil field reservoir in the
vicinity of an 0il well. The equations useful for formulating
the problem are developed in Appendix I, resulting in a

steady-state equation for potential:

_ 3 2 22y zy
T =145 - 7 - “56 * g0 * P(1-9/20) - =
| 22 | 1 ’
+ %5 + 5 + 6.6416667 y. o (1.22)
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In ordér that v(0,1) = 0, thé value of b in equation
I.13 is selected as b = 133.3333. With this value, the
steady-state condition, as shown in Tables J.)l and J.2 for
T, w, and v, for the grids 10 x 10 and 11 X 10 is approached
from initial conditions of T =w = v = 0 at every point
- except at the boundaries where
w(y,1)
T(y,0) = y°/120 - y%/2 + 133.83333 - 0.025 y

0

Il

v(y,0) = 0.025 +y - y2/40

{7.2)
v(0,z) '

Il

22/40 - 2/20 + 0.025

T(20,z) 0

w(20,2) = 0. . : _—

Solutions were attempted using from one to ten iter-
ations per time step. As in the first test probiem, At, the
time increment, was ihCremented 10% at the end of each time

step. From the initial condition, it was found that 37 time

From Table 7.1 it is seen again from the values of
T, 15 Ty 1, ond T, at the end of time intervals 35 to 40,
that five iterations perytimé step”are required when the
double-row method is used; two for the'tripie- and quadruple;
row methods. In Tables J.3 through J.11 are shdwn the re-
sults of the potentiai and the w flux determined throughout
the lattices at the 37th time step for four to six iterations
per time step for the aouble—row method, and two to four
iterations per time step for the’triple— and quadruble—row

methods. ' ) ‘ ]
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Table 7.1. Potentials for Iterations at Time

Intervals for Test Problem No. 2;

Time Step I Tterations 5 Iterations 6 Iterations.

Tp,q (S.8.=133.17)
35 133.16 133.16 - 133.16

36 ' 133.16 133.16 133.17:
37 133.17 133.17 133.17
38 ’ 133.15 133.17 133.17
39 133.19 133.17 133.17
40 133.14 133.17 133.17

Time Step 2 Iterations 3 Iterations 4 TIterations

T3 1 (5.8, = 133.10)

35 133.00 133.01 133.01
36 133.05 133.06 133.06
37 133.07 133.08 133.08
38 . 133.09 133.09 133.09
39 133.09 133.10 133.10
4o 133.10 133.10 133.10

Time Step 2 Iterations 3 Iterations 4 Tterations

Tu,1 (S.S. = 133.01)

35 132.98 132.97 132.96
36 133.00 132.99 132.99
37 133.01 133.01 : 133.00
38 133.01 133.01 133.01
39 133.01 133.01 133.01

bo '133.01 133.01 ' 133.01




Chapter 8. Conclusion

An efficient numerical method for the soiution of un-
steady state elliptic partial differential equations,

- particularly advantageous for anisotrobic problems, has
‘been developed. The method was further refined to reduce
the amount of coﬁputer time requiréd through an arrange-
ment of multiple groupings of equa#ions describing the given

problem. When two equations, the continuity and .irrotation-

ality equations, were solved, the number of cycles required

fell from 211,800 for the double-row method with a grid of
10 ¥ 10 to 72,900 for the triple-row method with a grid of
11 X 10. .This was optimum since with the quadruple-row

method, 95,300 cycles were required for a 10 X 10 grid.and

further multiple rows were unfeasible. Therefore the triple-

row method effectively reduced the computation time by 66%.
The quadruple-row method reduced the computation time by

57%.

’

Through an analysis of round-off error it was discovered

that with increased numbers of'points in the iﬁplicit-direc-
tion, the error in calculation incfeased, but with increased
ratios of impliéit to exbiicit increménts (R = Ay/Az), the

erfor decreased. Therefore, upon proper selection of incre-

ment size and number, a desired accuracy may be achieved.

The application of the multiple row methods to the oil |

reservoir problem produced the same results regarding num-

bers of iterations required per time step for stability. The

L. ‘ 65 | | N
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double-row ﬁneth'od required five iterations per time; the
( triple-row and the double-row methods réquired only two.
Consequently, for unsteady-state problems, especially
those for which the ADI‘ procedure 1s inefficient, _i__.__e_.,'f,or

Ay/bz >> 1, a stable efficient method has been developed.
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Nomenclature

Coefficient matrix
Constant

Components df A
.Point~Jacobi matrix.
Constént
Point-Gauss-Seidel matrix
Constants of itegratibn )
Constant

Diagonal matrix of A
Constant .

Excitation vector

Lower triangular matrix

Error in Checkerboard analog of
continuity equation ’

Error in checkerboard analog of
irrotationality equation

Error in checkerboard analcg
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)
Ne}
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3

Constant

Upper triangular matrix

Function of xv

constant

I-A matrix

Function of x

Size of mesh square

Tdentity matrix, number of iterations required

Dissipation constant
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N
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m

Nomenclature (Continued)

Reservoir of potential

Index of diagonals-parallel to main diagonal.
Lower triangular matrix

Iteration matrix -

Time iterate

Number of numerical opefations required
Nuhber of rows, columns, unknowns, or equations
Ratio Ay/Az, number of increments in z direction
Optimal ratio R

Number of increments in y direction
Potential “
Independent variable, timeivariable

Upper triangular matrix

Dependent func£ion

Horizontal flux

Vertical flux

Unknown vector

Independent variable

Horizdntal coordinate, independent variable
Verticalvcoordinate,-indepéndenf variable
Constant '

1/ Ay

1/At

1/ Az

Error vector
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Nomenclature (Continued)

5(2-a)

B(2-a), canonical indepegdent variable
(34a)s |

Estimate of eigenvalue

Canonical independent variable
Density |

Potential

Relaxation factor

Number of cycles of computation required

Subscripts
Coordinate in horizontal direction

Coordinate in vertical direction

"Time interate

Differential with respect to t

Differential with respect to x

Differential with respect to y

Superscripts

Auxiliary vector iterate

- Inverse of matrix

‘Time iterate

Error in centered difference as opposed to
checkerboard analog
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A numerical solution of a transient shock wave problem+

J. W. WATTSE and D. U. von ROSENBERG
Tulane University. New Orleans, Louisiana 70118

(First received 2 February 1968; in revised form 20 Muy 1968)

Abstract — A numerical method for solving one-dimensional, compressible flow problems including
locating and following shock waves is described. This method uses a small amount of computer
storage, and complete problems can be computed in a few minutes on an IBM 7044 computer. Results
of a problem for the discharge of air from a duct are presented.

INTRODUCTION SYSTEM AND EQUATIONS

PHYSICAL systems in which dispersion is small The physical system chosen for study is the
are fairly common. Several examples are com- discharge of an ideal gas from a duct, depicted in
pressible fluid flow, water flooding in oil reser- Fig. 1. The duct is open at onc end, closed at the
voirs. and convective transfer in heat exchangers. other. Originally the contents of the duct are ata
A distinguishing feature of these systems is the higher pressure than the surrounding reservoir.
fact that their describing variables tend to At time zero the fluid in the duct is allowed to
develop regions of steep gradients, called shocks.  start flowing into the reservoir.

When these systems are studied mathe-
matically, it is usually assumed that dispersion
becomes zero, causing the describing equations
to become hyperbolic. As a result the regions of v Reservoir
steep gradients mentioned above become finite -
discontinuities. There have been several efforts
to solve these systems by difference methods,
most of which involve smearing the shock over | v
a finite interval[l,2]. For this reason these
methods do not represent the shock very
accurately. Fig. 1. Schematic of duct.

Recently several hyperbolic systems have been
studied using the centered difference method,
originally developed by Wendroff. The results of
these studies indicate that the centered difference
method is accurate as long as the solutions
contain only small discontinuities. As these

If flow is assumed one dimensional and isen-
tropic, the following dimensionless equations
result.

discontinuities grow, the solutions develop Continuiry oL _ oV oz (12)
oscillations. making them of little value. ’ aw ay ay '
In this paper the centered difference method . i
is modified to yield ate description of v __ e aZ
8 yield accurate descrip Momentum W I Pk explZ(y— l)];)—/
shocks, and the modified method is demonstrated d ¢
on a typical physical problem. (1b)

tThis work has been partially supported by NASA Contract NASE-20136 issucd it Marshall Space Flight Center.
Huntsville. Atabama.
iPresent address: Mobil Oil Corporation, Dallas, Texas.
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J. W. WATTS and D. U. von ROSENBERG

Initial conditions V(Y,0)=0 (2a)
Z(Y,0)=2, (2b)
Boundary conditions V0,W)=0 (3a)

Z(1, W) =0for
VI, W) =0 (3b)

Z(1, W)= L X
y—1
y—1.,

In[1- V2, WylforV(l, W) <0 (3¢)

2

where Z = density = In(p/p,)
V = velocity = u/a,
Y = distance = X/L
W = time = qa,t/L
v = ratio of heat capacities.

When a shock forms, the flow conditions be-
come discontinuous at the point of the shock.
The relationships between the dependent
variables on either side of the shock are given by
the Rankine-Hugoniot equations[3]. These are
modified from their usual form to suit the
particular definition of the variables.

Z'—Z=InF (4a)
y—y=1=F, M, (4b)

F

where

+ !

Hv__.:p_

Yy—1tp

F=—" %

__+__

y—1 p

p = pressure 1y |

M, = shock Mach number = \/(7_&_._)/_)
2y p 2%

(6)

A = sonic velocity = exp(Y;lZ). (7)

2

Primed variables are evaluated behind the
shock; unprimed variables in front of it. The

50

velocity of the shock is given by

W, = shock velocity
= V — AM, shock moving left
= V' + AM, shock moving right.

The pressure ratio in terms of dimensionless
density is
!

”;= exply(Z' — Z)]. 8)

This expression is true for no entropy change
across the shock, and shocks are irreversible.
However, Rudinger[3] states that Eq. (8) can
always be used when the pressure ratio is less
than 1-5 and the errors are unimportant in many
cases for ratios as high as 2-5. For the problem
studied the pressure ratio across the shock did
not exceed 1:85; so Eq. (8) was used in all cases.

KNOWLEDGE OF SYSTEM REQUIRED

1t would seem that almost complete knowledge
of the system to be studied must be known
before the problem can be solved. Equations
(l1a) and (Ib) give no indication that a shock
will form or that the sonic velocity is of any
significance to this problem. However, the for-
mation of and movement of the shock are actually
indicated if these equations are solved numeri-
cally without a provision for the shock. This
occurrence is discussed in an earlier paper[4].
The formation of the shock can be located from
this solution by trial and error. To do this, one
would compute solution profiles which would in-
dicate the approximate time and location of the
shock formation. The moving mesh point would
be introduced in the same manner as discussed
below, and the profiles recomputed. The initial
guess of shock strength and location would
probably be slightly incorrect, but these could
be refined by trial and error until satisfactory
accuracy was obtained.

In most practical cases the initial shock forma-
tion and pressure ratio will be either known or
easily determined by some simple means. For the
problem discussed in this paper, it was determined
that the shock formed at the outlet of the duct at
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the time when the exit velocity decreased from
its initial value. This is the time that the initial
characteristic, which started from the exit at the
time the flow started, returns to the exit of the
duct after being reflected from the closed end.

This same knowledge of the system must be
available before any type of solution can be ob-
tained. In the solution of this problem by the
wave diagram method, Rudinger[3] requires this
knowledge of the system. In fact, Rudinger’s
solution is much less exact because he shows the
shock forming in the interior of the duct at a time
later than it actually forms. The numerical solu-
tion thus provides an accurate quantitative de-
scription of the behavior of the system from a
knowledge of the governing equations and the
criteria for shock formation.

CENTERED DIFFERENCE METHOD

The centered difference method was originated
by Wendroff and was later applied to physical
problems by Herron and von Rosenberg and von
Rosenberg et al.[4-6] The method is based on
second order correct finite difference equations
centered in time and space, which for the system
studied herein, are the following:

Continuity

Zi,n+l + Zi+1,n+1 - Zi,n _Zi+1,n
2AW

_ Vi+1,n + Vi+1,n+1 - Vi,n - Vi,n+1
2AY

- Vi+1/2.n+1/2 [Zi+l,n + Zi+x.n+1 '— Zi,n — Zi,n+l] (9)
2AY

Momentum

Vi,n+1 + Vi+1,n+1 - Vi,n_ Vi+1,n

2AW
=—_y Viernt Vittne1 — Vin— Vint1
- i+i/2,n+1/2 ZAY
— e V2
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Zi+1,n+ Zi+1,n+l - Zi,n - Zi,n+1
2AY

{

where i is the space index = Y/AY
nisthe time index = W/AW.

] (10)

The dependent variables at the centered point are
the arithmetic average of their corresponding
values at the four surrounding points.

There are two equations associated with each
space increment, or a total of 2N equations to be
solved, where N is the total number of space
increments. These equations are nonlinear and
must be solved iteratively. First, velocity and
density profiles at the new time level are assumed,
and the nonlinear coefficients, Vi o n+12 and
eVZ y1p i, are calculated. Then, the 2N
equations are solved simultaneously using
the bitridiagonal matrix inversion algorithm
developed by Douglas, Peaceman, and Rachford
[7]. This yields improved values of the dependent
variables at the new time level, which are used to
recalculate the nonlinear coefficients. This pro-
cess is repeated until convergence is obtained.

REPRESENTATION OF THE SHOCK

When a shock forms, the centered difference
method must be modified. In this modification
the shock is represented by a grid point which
moves with the shock as it travels down the duct.
The dependent variables are double valued at
this point, one value being associated with con-
ditions immediately behind the shock, the other
with conditions immediately in front of it. This
shock grid point moves through the mesh of
stationary grid points. As a result the finite dif-
ference elements on either side of the shock are
trapezoidal in shape, whereas the others are
rectangular. This situation is shown in Fig. 2.

1 1\ 1 !
ne =X -X X X =
%
w‘ y
n —X X -X
] ] N 1
i-1 i s el is2

Fig. 2. Finite difference elements near the shock.
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Because the finite difference elements adjoin-
ing the shock are not rectangular, modified
equations had to be derived for these elements.
The equations to the left and right of the shock
are analogous. The set of equations applying
immediately right of the shock is given below.

Z;‘.M i+ ZH Lt + Z.;.n _Z:" 1.
20W

!

+ Yx.n - Y.ﬁ'.)H ll:ZiH.n +Z§+!.n+l _Zx,n - .\l'.n+1j|

7 ’

pAY 2Yi+l - Yx.n_ )K.Il+l
7 1 ’

_ Vi- 1.y +1 i+1,n+1 Vx.n— Vs.rﬁl

2 —_ —y

~ Yi#l Ys.n ys.n +1

! ’
— V! I:Zi‘l.)l+Zi+l.ll‘I-Z.\‘Jl_ .\'JHl:l (ll)
P12 12 - .
2YH 1 Yx.n— )/.\'.NH

Equation (12) becomes
Vewn V. a1 — Ve = Vi
AW

Y.\‘Jl — Ys,nﬂ[ VH 1.n + VH T+l V:;n - .s,'.n+l
20w 2Yi+1 - Y.v,n - Ys,n+1

’ !
_ i [VHI.N + Vi+l.u+l - Vs,u  Yan+1 ]

T Vivuztap
RS 2Yi+1_Ys,n_Y.\',n+l

! !
NI [ZHl.n+Zi+l,n+I_Zs.u— Zs.nﬂ]
2Yi+1 - Yat.n - Yx,nH

+

(12)

where Y,,, = value of Y on shock point at the

old time level
Y,.n11 = value of Y on shock point at the
new time level
Vl'+1/2.n+1/2 = %(V.('.n-i- Vxl.n'#l + Vi+1.n + Vi+l.n+l
VAR y2.mi12 = 7}(2;." + Z.»’c.nﬂ + Zi+l.n + Zl+l,n+1 ).
The relationships between the double values

of the variables at the moving mesh point are
given by the Rankine-Hugoniot equations.

Z~Z,~InF (13)

U. von ROSENBERG

viey. = F m
s Vs — F s

The analogs presented above are written about a
point which is centered in time at the time value
of w,+ (Aw)/2. The space position of this
point is a distance to the left of Y,,, equal
to the average of the space increments at the
two time levels. This value is Y., — (Y,,+
Y.n:1)/2. These analogs were found to be the
highest order correct analogs for this trape-
zoidal area and also the most convenient to use.
Several other points, including the center of
mass of the trapezoid, were investigated.

As mentioned above, the shock moves across
the stationary finite difference mesh. The set
of equations associated with the particular incre-
ment through which the shock is moving is
replaced by three sets, which represent the
trapezoidal element left of the shock, the
Rankine-Hugoniot equations across the shock,
and the trapezoidal element right of the shock.
Four unknowns are added to the system—the
values of V' and Z’' behind the shock and the
values of V and Z in front of the shock. The
addition of these equations and unknowns does
not change the method of solving for the
dependent variables at the new time level.

DETERMINATION OF THE SHOCK STRENGTH

The computations described above assume
the pressure ratio across the shock to be known.
Actually this quantity changes with time
and must be calculated at each time step. This
calculation requires a determination of the pres-
sure immediately in front of the shock, p. The
following rationale is used in this determination.

In compressible flow systems, disturbances
are propagated at sonic velocity, whereas shocks
move faster than sonic velocity. Therefore, a
shock moves faster than the disturbances it
propagates and has no effect on flow in front of
itself. For this reason the solution to the dif-
ferential equations in the region of the duct in
front of the shock is unaffected by the presence
of the shock. In particular, the pressure im-
mediately in front of the shock is independent of
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the shock. This pressure can be calculated from
knowledge of the solution profiles at previous
time level and the location of the shock at the
new time level.

This calculation can actually be implemented
in several ways, and the particular method used
is not important. It was chosen to use an adapta-
tion of the method of characteristics as developed
by Streeter et al.[8]. A detailed description of
these calculations is given elsewhere [9].

The calculation of the pressure in front of the
shock is used in the following iterative scheme
for determining the pressure ratio across the
shock.

1. To start the calculations, a pressure ratio

across the shock is assumed.

2. The shock velocity and location of the new

time level are calculated using the following
relationship

Ys,n+l = Ys,n+ WSAW

3. Solution profiles at the new time level are
calculated using the bitridiagonal algorithm.
These profiles include the density behind
the shock, from which the pressure behind
the shock is obtained.

4. The density in front of the shock is cal-
culated as described above. This calcula-
tion is based only on solution profiles in
front of the shock at the old time level.

5. An improved pressure ratio across the
shock is calculated using the results from
Step 3 for the pressure behind the shock
and from Step 4 for the pressure in front
of it.

6. Steps 2-5 are repeated until the pressure
ratio across the shock does not change
between successive determinations.

Due to the complexity of the above iteration
process, the properties of its convergence
cannot be studied theoretically. However.
results obtained on the digital computer demon-
strate convergence. At first glance the process
might appear awkward and time consuming,
but this is not actually the case. As mentioned
above, the centered difference method requires

iteration on the nonlinear coefficients. When
the two iterations are performed simultaneously,
only a small increase in computational time is
required.

RESULTS

The methods described above were pro-
grammed for the digital computer, and a run was
made using 80 space increments withy = 1-4 and
Z,=0-7409. The results of this run are pre-
sented in the form of velocity profiles at in-
creasing values of time (Figs. 3-5).

08
06
;
o4
| ‘00 o075 0-50 w2025
So2
0
0 02 0-4 06 08 10

Dimensioniese distonce.y

Fig. 3. Velocity profiles w = 0-25 tow = 1-00.

Soon after the physical process is started, the
exit velocity reaches 0-8 and remains at this
value until W =1-5. At this time the exit
velocity starts to drop and the shock forms at
W =1-52. As time goes on, the shock grows
in magnitude and moves toward the closed end
of the duct, reaching it at W = 3-0. The shock
is reflected from the closed end and moves
toward the open end, leaving the duct at W =
4-40.

Although it is not presented here, at W = 6-08
a second. weaker shock forms and passes down
the duct and back out. Eventually a third. stiil
weaker shock goes through the duct, then a
fourth, and so on. The third and successive
shocks are weak enough not to require the
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w=l2 w50
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Fig. 4. Velocity profiles w = 1-25 to w = 2-9725.
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Fig. 5. Velocity profiles w = 3-25 tow = §-25.

moving grid point. Good representation of them
can be obtained using the unmodified centered
difference method.

CONCLUSION

An efficient means has been developed for
solving hyperbolic partial differential equations
including shocks. In particular, the method
developed gives very good representation of the
shock. There is no reason this method could
not be extended to other sets of equations.
The only requirement would be relationships
equivalent to the Rankine-Hugoniot equations
for the particular system under study.

NOTATION

speed of sound

dimensionless speed of sound

function defined in Eq. (5)

index in space

length of duct’

shock Mach number

index in time

pressure

time

velocity

dimensionless velocity

dimensionless time

dimensionless shock velocity

distance from the closed end of the duct

dimensionless distance from the closed end
of the duct

dimensionless density

%Xz%%?:\b:;l*..."ul:

N

Greek letters

v ratio of the heat capacities
p density

Subscripts

r evaluated at a reference condition

s evaluated at the shock
Primed variables are evaluated behind the
shock.
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APPENDIX
A. Initial location of the shock

The method used to determine the pressure ratio across
the shock is described above. This method is self-correcting
in the following respect. If the grid point representing the
shock falls behind the actual location of the shock, the
pressure ratio automatically increases, speeding up the grid
point and causing it to overtake the shock. Similarly, if
the grid point gets ahead of the shock. the pressure ratio
decreases and the mesh point is overtaken by the shock.

This feature of the solution was demonstrated experi-
mentally by introducing the moving grid point into the
numerical solution a short distance away from the shock. As
the numerical solution progressed, this condition quickly
corrected itself, with the moving point coinciding with the
shock after a few time steps. Thus to introduce the moving
point into the numerical solution, it is necessary to know
only approximately the time and location of shock formation.
Actually these can be accurately determined as described
below.

From wave theory it is known that the shock forms at the
open end of the duct. It starts off with an infinitesimal
magnitude and grows as it moves down the duct. Thus, only
the time of formation must be determined.

When the physical process is started by allowing fluid to
flow out of the duct, an expansion wave travels from the
open end toward the closed end. Upon reaching the closed
end, this wave is reflected and travels back toward the open
end. The shock forms when this wave reaches the open
end of the duct.

To introduce the shock initially, one computes the time
that this wave reaches the open end as a part of the numerical
solution. The moving point representing the shock is inserted
at this time with a unity pressure ratio across the shock. From
this point the shock automatically grows and moves into the
duct.

B. The crossing of a stationary mesh point by the shock

As the shock moves down the duct, it periodically crosses
one of the stationary points. In this situation, the shock is on
opposite sides of the stationary mesh point at the old and

new time levels. This stationary point is ignored, and the
finite difference equations are written about two larger
elements, as shown in Fig. 6. Soiution profiles al the new time
level are computed just as before. Then the values of the
dependent variables at the stationary point which was ig-
nored are obtained by interpolating between the points on
each side of it. As the shock velocity increases, the shock
could cross two mesh points during a single time step. This
event is prevented by decreasing the time step size as
necessary.

| N | |
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Fig. 6. Shock crossing a stationary mesh point.

C. Reflection of the shock from the closed end of the duct

When the shock reaches the closed end of the duct, it is
reflected and starts traveling toward the open end. To get
the shock reversed, it is necessary to calculate the pressure
ratio across the shock just after reflection.

At the instant the shock reaches the closed end, the velocity
left of the shock is known to be zero due to the Y =10
boundary condition. In addition the velocity and density to
the right of the shock are known from the solution profiles
(the time step is adjusted so as to have the shock exactly
at Y= 0 at the new time level.) Thus Z, V, V' are known
and Z' can be calculated using the Rankine-Hugoniot
equations. Using these values of Z and Z’, the pressure ratio
is calculated by Eq. (8).

After reflection the shock travels back to and out of the
open end. Eventually a second, weaker shock forms, then a
third, fourth, and so on. The computational procedures are
the same for each successive shock.

Résumé — On décrit une méthode numérique pour résoudre les problémes de courants compressibles
unidimensionnés, y compris les travaux de localisation et de poursuite des ondes de choc. Cette
méthode n’emploie qu’une faible quantité de données & emmagasinage par ordinateur et les problémes
entiers sont résolus en quelques minutes par un ordinateur IBM 7044. On présente les résuitats d’un
probiéme pour la décharge d’air & partir d’une conduite. L
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Zusammenfassung — Fine numerische Methode zur Losung eindimensionaler Stromungsprobleme bei
komprimierbaren Fliissigkeiten einschliesslich lokalisierter und nachfolgender Stosswellen wird
beschrieben. Bei dieser Methode ist die Speicherleistung des Rechners nur zu einem geringen Grad
erforderlich. und vollstindige Probleme konnen auf einem IBM 7044 Rechner in wenigen Minuten
ausgearbeitet werden. Die Ergebnisse eines Problems hinsichtlich der Luftabgabe aus einem Schacht
werden angefiihrt.
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NUMERICAL SOLUTION OF CHARACTERISTIC EQUATIONS FOR TRANSIENT,

COMPRESSIBLE FLOW

. Introduction. The method described by Watts (1) for the

numerical solution of transient, compressible flow including
shock waves is a satisfactory one. However, it differs some-
what from a solution obtained by thé method of Warmbrod and
Struck (2). This difference may be caused by the neglecting

of entropy variations in Watts' model. Also, since the
characteristics are used to follow the shock in the solution

by Watts, there is some ad&antage to solving the characteristic
equations rather than the equations in terms of the physical

variables.

Development of Characteristic Equations. Three differential

equations are needed to describe a polytropic flow. The
partial differential equations which describe this flow are
well known and are derived from material, force, an@ energy
balances. The properties of the fluid are taken to be those
of a perfect gas with constant heat capacity so that the
equations will be less complex.

The differential equations are often expressed in terms

.bf the fluid velocity, u, temperature, T, and density, p.

With the independent variables of length, x', and time, t',

the equations are



d &n 0 &n Ju :

at'p + u ~——§Tﬂ-+ 't Fu = 0 (1)
ou ou 3 n 9T
sgr T Ugxm Y —max'p toRygm =0 (2)
1 [ a1 L e ] 3 anp in p|
-1 | 3¢ ¥ Yoo | o o P T 0 (3)

" The physical properties of the fluid enter the equations
through the specific gas constant, R, and the heat capacity
ratio, y. The function F accounts for the geomctry of the

duct and is defined as

¥ B ax’ : | | | (4)

where B is the cross-sectional area of the duct. Area changes
with time are not included in these eqguations.

When certain types of boundary conditions are imposed,
shocks form and move in and out of the duct. Some of the
difficulties in obtaining solutions to compressible flow
problems lie in determining the time and place of formation
of these shocks and in following their motion thrcugh the
duct. The extent of the discontinuity in each of the dependent
varialles is felated thfough the appropriate Rankinc-llugcniot
équation, which can be found in any text on bompre@sible flow,
such as Rudingef (2).‘ |

A number of new variables can be defined; one of the
more fundamental of these varialiles is the sonic velccity, a,

which is defined as



a = VyRT (5)
or 1in daimensionless terms as
a
A = —— (6)
Qe A

where a, is the sonic velocity alt scme reference state.
The entropy cf the fluid above that at the reference state
is also used. A convenient dimensionless entropv, S, is

defined as

- S
S = TR (7)

where S' is the dimensional entropy.
Two varial:les, known as the Ricmann varialkles or
characteristics, are to be-utilized in this method of

soluticn. These are defined as

2
P=-"CR + U 8)
Y~ (8
- 2 - o
Q"'“Y“"_IA | U . (.z)
where the velocity U = : .
o

The governing eqguations can be expressed in terms of

these new variables as

\

3y 2P 4 pou - a2 25
st t (U + A)aX + FLU ne == 0 (10)



29 - a2 A2 35
== + (U Al + FAU + A 3% = 0 (11)
S 39S  _
£t U = 0 (12)
The length and time have been made dimensionless in these
equations, with
x!
X = ']:— (13)
aot' »
t = 7 | (14)

where L is the length of the duct.

The numerical solution of thesé equations by the centered
difference method is much like the method described by Watts.
Boundary conditions are known at each end; so the implicit
difference method requires the simultaneous solution of all
the finite difference equations in the three variables, P, Q,
and S. This is accomplished by an algorithm for a tri-

tridiagonal set of equations (4).

Alternate Method of Treating Shock. The shock will be

represented by a pair of points which move through the fixed

.grid just as was done by Watts (l). The speed of the shock

at the new time level, and, thus, its location, will not be
known. However, a value. for its speed will be assumed, and
its location at the new time will be known subject to this

assumption. A series of computations will be made from which



a new value of the shock speed is .obtained. This procedure
will be repeated until convergence is obtained.

For weak shocks, the value of the Q characteristic
remains constant as the shock moves in the negative-x
direction, and the value of the P characteristic is constant

across this shock. Consequently, a much simpler method of

. computing the characteristics at the shock is proposed.

Since the value of Q is known at the new time level on the
upstream side of the shock, the finite difference equations
upstream 6f the shock can be solved simultaneously using
this value of Q as a boundary condition. The solution of
these equations will yield the value of P at the upstream
side of the shock. For weak shocks, this is also the value

of P on the downstream side of the shock. With this value

~as a boundary condition, the finite difference equations

downstream of the shock can be solved simultaneously.

A value of Q on the downstream side of the shock will result
from this solution; so that values of U and A and the shock
Mach number, M, can be obtained. These values yield a new
estimate for the shock speed, W at the new time level.

If this value agrees, within a pre-set tolerance, to the
assumed value, the computations are completed at tﬁe new
time level. If not, this neh estimate for W is used and

the iteration is continued.



For weak shocks moving in the positive x-direction, the
value of P in front of the shock remains almost constant,
and the value of Q is almost continuous across the shock.
Thus the same procedure can be used.

For stronger shocks the exact equations for the change
. in P and Q across the shock must be used. The details of
the method of treating stronger shocks have not been completed.
However, any such method will involve the simultaneous
solution of the Rankine-Hugoniot relations with eguations from
the finite difference grid. Also, some iteration will be

necessary.

Progress on Solution. The numerical method has been developed,

and a computer program is working for the numerical solution
. of equations (10), (11), and (12). The program for treating
weak shocks is being written at this time. This project

should be completed within a few months.



Nomenclature

a - local speed of sound - ¥ yRT
a - speed of sound at reference temperature
A - a/ao

- cross sectional area of duct

1 ap
B dx
length of duct

w_-U
s

A

Mach number of shock

2
2
- =T A-U

O B mow
]

specific gas constant

' - entropy of gas

n n A O
|

T - temperature of gas
t' - time
- T
t aot /L
u - velocity of gas
U - u/ao
w_ - speed of shock
X' - length coordinate
Xx - x'/L
Y - ratio of heat capacities

p — density

SORN

miaialea .

Vst skl o e ¢ A, it




REUFERENCLS

(1) -

(2)

(3)

(4)

watts, J. V., and D. U. von Recsenberg, Chem. Eng.
Sci., 24, (Janvary 1969) 49-56.

Warmbrod, John D., and Heinz G. Struck, Application
of the Characteristic llethod in Calculating the

Time Dependent, One-Dimensional, Cenmpressiple Flow
in a Tube Wind Tunnel, LZSh I ¥~-53769 (August 1968).

Rudinger, George, Vave Diagrams for Ron-Steady
Flow in Ducts, van Nostrand (1955).

von Rosenberqg, D. U., Methods for the Numerical
Solution of Partial Differential Eguations,
Elsevier (1909).




Section V

Molecular Sieve Adsorption Problem



NUMERICAL SOLUTION OF MICROSCOPIC-MACROSCOPIC SYSTEMS

Introduction. The adsorption of a component from a gas stream

by a bed of solid particles is a complex process. Yet, a
knowledge of this process is necessary for the design of mole-

cular sieve beds to remove carbon dioxide from the atmosphere

of space vehicles and for the prediction of the behavior of

these beds. At the request of the Propulsion and Vehicle

Engineering Laboratory at Huntsville such a study was under-

taken as part of the work performed under contract NAS8-20136.
The processes of adsorption and then desorption to

regenerate the bed are carried out under different conditions;

so the two processes were described by different models. A most -

complete description of the adsorption model will be presented
first, and then the differences of the desorption model will

be discussed.

»

The Adsorption Models. A mixture of nitrogen, oxygen, and

carbon dioxide is flowed through a column packed with molecular
sieve beads. During this process the carbon dioxide is adsorbed
onto the surface of the beads and diffuses through pores into
the interior of the beads. Heat is releésed onto the solia as
the carbon dioxide is adsorbed. The solid and gas are, conse-
quently, at different temperatures} so heat is exchanged betwecen

the two, and heat is conducted and convected down the bed.



Although the temperature, pressure, and molecular weight of

the gas vary, the effect of these on the gaé density is assumecd

small so that the velocity of the gyas is taken to be constant.
For these conditions, a material balance on carbon dioxide

in the gas phase yields

- Xk am - = 9P ap
fpg k aly ps) = =o 4t ou s (1)

All the symbols are defined at the end of this paper. The
first term in this equation represents the transfer cf carbon
dioxide from the gas phase to the surface of the solid particle
under a partial pressure driving force. The term P is the
partial pressure of carbon dioxicde which 1is in eguilibrium
with the loading of carbon dioxicde on the surface of the solid
particle.

A heat balance on the gas phase yields

1 h - -y a | 4 (2
T g o hally T T =gyt iy (2)
g9
The heat balance on the solid phase then vields
R ' 37
ng;; + h a(lg—ls) + k a(p~pS)Au ='p Cogr (3)

The third term in this cquation accounts for the heat released

4]

to the solid when the carbon dioxide is adsorbed. It i
assumed that each solid bead at any given time and position is

at a uniform temperature throughout. ldovever, the diffusion,
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by whatever mechanism, of the carkon dicoxide into the interior
of the beads is accounted for by allowing the loading of carhbon
dioxide on the bead to vary as a function cof radial position
inside the bead. |

\ material balance on carkon dioxide insicde the bead is

']

needed to define this variation: the bead is assumned to be
spherical in shape, with all beads being of the same diameter.
The one-dimensional equation for diffusion into the interior

of the peads 1is
1 93 ) 0w _ 9w v
D E—z— “r—_ [l *-—] = (4)

This equation applies to each kead, and beads are located
throughout the length of the bhed. The gas in contact with

each bead contains carxbon dicxide at a partial pressure which

]

varies with both time and position.

This microscopic system must he tied to the macroscepic

gas system by & boundary condition at the surface of the heads.

This conditiocn states that, at thc surface where r = R,
3w . ) _ 5
Dpp [é—fJ + kI (p ps) = 0 (b)

'An equilibrium condition relating the loading at the surface
of the bead to the equilibrium partial pressure is also required.
This relation is a function of the solid temperature. For (52)

sieve this condition is given (1) as



=N

pg = pr[ 23.823 - o s +J-678 ln\'\v’] (6)

Specification of the initial condition of the bed and of the
inlet conditions of the gas stream are sufficient to define
the probiem.

An efficient numerical method was dcveloped for this
complete model. Values of the various parameters wvere obtainedv
from the report by Airesearch (l), and a number of runs were
made with the program., The program ¢id not teke a large
amount of computer time in the light of the complexity of the
model. However, with the numerical values of the physical
constants used, it wvas apparént from these runs that a number
of. other simplifying assumptionS'cou;d e nade.

The most significaﬁt finding was that, hecause of the
high value of the coefficient for diffusion vithin the beads,
the loading inside the bcads was almost uniform. Consequentlv,
the microscepic system ccould Le represented by a single
equation within the macroscopic system. In effect,-the nicro-
scopic material balance of cquation (4) is combined with the

material balance at the surface of the bead to yield this

relation, which is

kall i _ w : ,
“E; (p - Ps) T3t : (7)

This macroscopic nocdel is then represented by eqns. (1), (2),

(3), (6), and (7). The computer program for the microscopic-



macroscopic system was simplified to describe this simpler
system, and the results differed little from those of the
complete system with significant savings in computer time.

Two furtiher sinplifying assumptions can also be justified.
First, it was found that the longitudinal temperature variation
was small; so, with the small value of K, the ked thermal
conductivity, this term can e eliminated from the equation.
Furthermore, h, the heat transfer coefficient bhetween the gas
and the solid was large enough that the temperature of the
gas and that of the solid differed little. Thus, these two
phases were assumed to be at a single temperature and eqns (2)

and (3) werc combined tc yield the reclaticon

" p_cC A '
T s’s 3T _  kadll a ,
Ui * [1 Y Fc | 3t T . PP (8)
_ g9 g9

bguations (1), (6), (7), and (&) thus constitute the simplest

nodel for the carbon dioxide systen.
An assumption that mass transfer is rapid encugh: for

cquilibrium to exist between the partial vressure of carbon
dioxide in the gas phase and the lcading of carbon dicxide

on the solid pbeads is not justified. Kowever, the samne

simplified program was used for the adsorption cf water vapor

by a molecular sieve. For this system the mass transfer
coefficient, k, is nuch larger than for carkon dioxide, end
such an assumption is justified. Fore. (1) and (7) can be

combined to yield
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Equations (8) and (9) together with an eqguilibrium relation
for the water vapor system analogous to egn. (6) then

describe this simplest system for adsorptidn.

Model for Desorption Process. One proposed procedure for the

desorption of the carbon diocxide is to open the bed to the
vacuum of deep space. The gas in the voids of the bed will
quickly be exhausted, and, after this process is completed,

the total pressure of gas in the voids will cqual to the partial
pressure of carbon dioxide that haé desorbed from the bed.

For any pressure drop at all, the density of the gas cannot be
assumed constant, but it will be related to the temperature énd
pressure by the ideal gas relationship or other appropriate
equation of state. The material balance in the gas phase then

becomes
Ka Bog 3(upg)

-5 P - 1 (10)

and the heat balance can be obtained as

) . o
Ka 3 . |27 4 27| 4 PsCs ar
-5 (p-pg) [-c— + T"—pg[at * uax} T Tfc_ 3t (1)
g i 9
Equation (7) still applies to this system, and the equilibrium

relation of eqn. (6) also applies. However, a relation between

the velocity and the pressure gradient is required. The report
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by Airesearch (l) gives an empirical relation of the form

_ . lap ' ‘
u = F % ) (12)

where the coefficient F is given as a function of p. These
relations‘are'sufficient to define the problem. A numerical
method for the solution of these equations was developed.

The results of this solutidn showed that, for the boundary'
conditions developed by Airesearch (1), the desorption of the
carbon dioxide from the beads was much slower than the flow
of carbon dioxide out the bed to deep space. Consequently,
the partial pressure of carbon dioxide in the void of the bed
can be taken as zero for all positions in the bed. The
desorption from any part of the bed is then governéd simply by

- kant = dw (13)

P
Pg s dt

and the equilibrium relationship. The sclid temperature will

o)

L

drop, however, so a relationship to determine it is.needed.

CX

This is

aT  _ dw
MCS 'a—t' = [AH + CgT] a—E (14)

‘At some time during the desorption process heat may be applied
to the bed to increase the rate of desorption. This heating
term can be included in egn. (14). Of course, if the desorption
rate is increased greatly, it may be necessary to use the mofe

complete desorption model.



Numerical Method for Solution of Complete Adsorption Model.,

The complete adscrption model consists of equations (1), (2),
and (3) to describe the macroscopic system, and equation (4) to
describe the microscopic system. These are related through
egn. (5). The three dependent variables of the macroscopic
system are the partial pressure of carbon dioxide, p, and the
temperatures of the gas and of the solid, 'I‘g and TS. The
dependent variable of the microscopic system is the loading
of carbon dioxide on the solid beads, w. The partial pressure
in equilibrium with this loading, Py is related to w by egn. (6).
For this system of equations and unknowns a double grid of
points at each time level is set up for the finite difference
solution. These points are arranged as shown in Figure 1.

The properties of the gas, p and Tg’ are determined at the

- AX -3
x 0 x 0 x 0 x 0 =% 0 x n+l
T ' |
At +
4
x 0 x 0 x 0 x 0 x 0 x n
i-1l 1 1

Figure 1. Arrangement of Points

points marked x; and those of the solid, w and Ts’ are
determined at the points marked 0, which are half-way between

the points for the gasrproperties. The finite difference



analogs are written around a point in the center of a box
formed by four points for the gas properties. One of these
points is marked T in Figure 1.

The substantive derivatives of the gas properties require
that %%'= u to minimize truncation error (2).This restriction
requires the time step to be small, but it was found to. be a
necessary restriction for the type of process simulated. The
finite difference analog to one of these substantive derivatives

is

P -p- ,
3p dp ~ Yi,n+l Yi-1,n
5t + Uz v (15)

The time derivatives for properties of the solid are represented
simply as

aTs n (Ts)i,n+l

ot . At

-(T_).
s'i,n (16)

It should be noted that solid propertiés with the subscript i
are at a point one-half an increment from the point'where
properties of the gas phase have the same subscript.

The terms represenﬁing the interphase transfer of mass
and heat must be approximated at the centered point marked by +

-in Figure 1. -The solid properties are represented simply as

i,n

(T %%[‘TS). * (Ts)i,n+lJ | | (17)
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The gas properties were originally represented by the average
of the values at the four surrounding points as was done by
Herron (2). It was discovered during the course of this

research that the diagonal analog of

i
Pi-y,n+y & 7 [Pi,nﬂ ¥ Pi—l,n] | - (18)

led to much better solutions. This discovery was applied to
the countercurrent heat exchanger problem (2) and led to a
publication (3) which is also a part of Section V of this report.
The solution of this set of equations proceeds first with
the computation of the loading, w, and the partial pressure, D,
throughout the column“at thé new time step from egns. (1), (4),
(5), and (6). The temperature of the gas does not appear in
these equations, and the temperature of the solid is included
only through the equilibrium relation, eqn. (6). The effect
of solid temperature on this relation is slight enough that
*the temperature profile at the old time level can be used.
Several runs made with iteration showed there was no discernable
effect by improving the values for the temperature in the
equilibrium relation.

All the beads within one increment of the bed, between

two points marked by x, were assumed to have the same values of

temperature and carbon dioxide loading and to be located at the
point marked by 0 at the center of the increment. A grid of
points in the radial direction within the bead was set up so

that the gradient of w within the bead could be computed from
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the Crank-Nicolson finite difference equation analogous
to eqn. - (4).

The solution was begun by computing the loading distri-

bution within the bead at the point nearest the bed inlet.

The analog to the boundary condition of eqn. (5) contains

the unknown value of p at the point one-half increment beyond
the solid point. However, this value can be obtained in terms
of 2 at the solid point from an analog to egn. (1). Egn. (6),
the equilibrium relation, then is the third equation required.
Thus, with a minimum of iteration the loading distribution
within the béad and the carbon dioxide partial pressure at the
next gas point are obtained. This program is used to compute
these values for the entire bed at the new time step.

Once the profile of p as a function of distance at the
new time level is known, the distributions of T and TS with
distance can be computed from the finite difference analogs
to egns. (2) and (3). Egn. (3) is second oxrder in ?s, and
there is a boundary condition at each end. Consequently, the
values for both temperatures at all grid points at the new
time level must be determined simultaneously. This solution
is readily pefformed by the algorithm fof bi-tridiagonal

equations (4).

This method of numerical solution was programmed and gives

very good results. It was discovered from the results of

studies with this program that simplifications in the model
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could be made. The first simplification entailed only the
replacement of the finite differénce grid within a particle
by a single value of w at each solid point. This shortened
the running time considerab;y.4 The siﬁuitaneous solution of
the entire temperature distributions was still required.

For the simplest model iﬁ which the same temperature is
assigned to both solid and gas and conduction is neglecfed,
the temperature profile can be computed one point at a time.
This model is described by egns. (1), (7), and (8) together
with the equilibrium relation. The program for this model
takes only a small amount of computer time and gives results
which compare favorably with those obtained from the most
complex model. The uncertainty in the values of the various
coefficients does not warrant use of a more complex model.
Furthermore, for the purposes of the laboratory which requested
the program, this simple program is sufficiently accurate.

It is important, however, that it was compared with a much
more complete model so that the additional simplifying

assumptions could be justified.

Numerical Method for Solution for Desorption Model. The

numerical solution of the desorption process was more difficult
even for the simple case with only one temperature variable
and with uniform loading within the beads. The additional

variable u, the gas velocity, was determined at the points



marked by 0 in Figure 1, so that the velocity was one-half
way between points where pressure was determined. This
arrangement was convenient for the numerical solution of
eqn. (12). The equations for desorption contain more non-
linear terms since the derivatives of gas density, pg, must

be expanded to derivatives of p and Tg through the equation

. of state. Also, the boundary conditions are uncertain. An

empirical boundary condition on pressure at the outlet of
the bed is presented by Airesearch (1). This relation
accounts for pressure drop in the duct connecting the end of
the bed to deep space.

As a result of this boundary condition, an initial
pressure distribution inside the bed must be assumed to begin

the numerical solution. The only assumed distribution which

would yield reasonable results with the program was one oI

zero pressure throughout the bed. Later analysis of the
relations and coefficients confirmed this value to be
reasonable. Thus, it was determined that the process of
desorption was much slower than the outflow of the gas from

the duct, at least at the temperatures of the unheated ked.

Stafus. The éomputer érograms have been made available td the
laboratory which requested them. A few comparisons of other

simple models of this process with‘the models discussed above
may be made. A most complete description of this work in the

form of a doctoral dissertation is being prepared.



Nomenclature

a - surface area of beads per unit volume of bed available

for interface transfer
cg - ) heat capacity of gas
cg - heat capacity of solig
D - coefficient of -diffusion for
f - void fraction in begd -

h - coefficient of heat transfer

AH - heat of adsorption

k - coefficient of mass transfer
K - thermal conductivity of bed
M - molecular weight of adsorbed
P - partial pressure of adsorbed
ps - saturatioﬁ partial pressure
P - total pressure

r - radial position inside bead
t - time

T - temperature

Tg — temperature of gas

Ts =~ temperature of solid

U - gas velocity

adsorbed species inside bead
between gas and solid
between gas and solid
species

species

of adsorbed species

W - loading of adsorbed species on solid

X ~ distance position in bed
pg = gas density
bp.— particle density of bead

g ~— bulk density of solid in bed
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Improved numerical solution of a countercurrent heat exchangert

(First received 13 September 1968 in revised form 28 September 1968)

Dear Sir:

In a previous paper[1] an efficient numerical method for
the solution of pure convective transport problems with
split boundary conditions was described. The one short-
coming of this method was an oscillation in the neighborhood
of a discontinuity in one of the dependent variables as shown
in Fig. 2. Although the oscillation did not remain in the
system after the discontinuity had flowed out of the system
and later results were not distorted for some applications.
it is desirable to -obtain a numerical solution without this
oscillation. Recently, it was discovered that the oscillation
can be eliminated by a minor modification which does not

‘complicate the solution nor decrease its efficiency.

The systemused to describe the method is a countercurrent
heat exchanger described by

du_ -y

FYi Y.(v—-uw) Vig; (1a)
LIV

3}'-— Y, (v ll)+V,ax. (Ib)

Boundary conditions for the test problem are

u(x,0) =0foraltx
u(0,) =100 forall s
v(x,0) =0forallx
v(L,t) =0forall:.

Centered difference equations were used to replace Eq. (1)
for the numerical solution. Location of the center point for
the analogs is shown in Fig. 1. The only analog which was
modified from those described in the original paper is the
one for u;, ;5.1 Used in the interphase heat transfer terms.

"In the original method, the analog used was

Upryznsuz ™ $ (Ui anr F Uingatljasr+ ia). 5

It is this analog which causes the oscillation. For the modified
method, this temperature is replaced by the average of the
two values lying along the diagonal in the direction of flow;
namely,

Upeyzarrie ™ H Ui mer Hitsa). (5a)

e

. Kt i B2
Fig. I. Physical representation of centered diﬂ'erehéing.
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Fig. 2. Temperature profile of inner fluid for 100°F step
change at exchanger inlet after & sec. Implicit numerical
solution 'vs. analytic solution.

This analog preserves the second-order-correctness of the-

method in both space and time. Furthermore. the resulting
finite difference equations fit the bi-tridiagonal form and can
be solved by the algorithm available. The shifted numbering
system described in the original paper should be retained.
and the relation between space and time increments that
minimizes truncation should also be used.

Results obtained using the analog of Eq. (52) show no
oscillation whatsoever. In fact, these results agree to within
0-01 per cent of the analytic solution for the case shown in
Fig. 2 at all points. This close agreement was obtained using
twenty increments for the entire exchanger length. There was
no distortion whatsoever at the discontinuity. This behavior
makes the solution of the modified system useful for represent-
ing hyperbolic systems in controller studies.

No detailed analysis of the two analogs has been made.
However. it is apparent that the four-point analog of Eq. (3)
introduces into its equation a value of the dependent variable.
Uj10, Which is ahead of the discontinuity. Actually, the
function « is double valued at the discontinuity, and the
inclusion of the value at this point gives rise to the oscillation.
The diagonal analog of Eq. (5a) does not contain values on
both sides of the discontinuity, so no oscillation occurs.

A number of analogs for the unperturbed temperature, v,
were used in conjunction with analog of Eq. (5a) for u. The
four-point analog of Eq. (5) for v gave the best results,
although results using the diagonal analog Eq. (5a) were
satisfactory. As a general rule. the four-point analog can
always be used if there is no discontinuity in the dependent
variable, but the diagonal analog should be used when a dis-
continuity is introduced into a variable.

D. U. VON ROSENBERG
D. E. MOUNT

Tulane University
New Orleans, Louisiana, U.S.A.
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